Abstract
The basic assumption, for which we try to provide evidence in this paper, is that students always use multiple explanations before and after teaching. Other studies also give evidence of competing conceptions used in one content area, yet often a variation of context is seen as the cause of multiplicity. The study presented here focuses on individual answers within one context. A total of 47 students from grade 7 up to university level participated in interviews which dealt with three qualitative tasks in the domain of force and motion. As the interview technique was based on waiting and asking questions of specification without giving additional information, the context is assumed to be stable when dealing with one task. Data interpretation focused on 27 students from four different schools (age 16), who were interviewed before and after they attended a class in mechanics. Results show that most answers, even with respect to one task, reveal multiple explanations.
Keywords
- Scientific Element
- Impetus Conception
- Multiple Choice Test
- Interview Technique
- Interview Situation
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
DiSessa, A. A. (1993). Towards an Epistemology of Physics. Cognition and Instruction, 10(2 & 3), 105–226.
Driver, R., Leach, J., Millar, R. & Scott, P. (1996). Young People’s Images of Science. Milton Keynes: Open University Press.
Duit, R., Jung, W. & Pfundt, H. (1981). Alltagsvorstellungen und naturwissenschaftlicher Unterricht. Köln: Aulis.
Gerdes, J. & Schecker, H. (1999). Der Force Concept Inventory. Der Mathematische und Naturwissenschaftliche Unterricht, 5/99, 283–288.
Gunstone, R. & Watts, M. (1985). Force and Motion. In R. Driver, E. Guesne & A. Tiberghien (Eds.), Children’s Ideas in Science. Philadelphia: Open University Press.
Hartmann, S. (2004): Erklärungsvielfalt. Doctoral Dissertation, University of Bremen.
Häußler, P. (1983). Wie sich physikalisches Wissen im Gedächtnis der Lernenden verändert. Lernzielorientierter Unterricht, 4,83, 27–37.
Jung, W. (1992). Probing acceptance: A technique for investigating learning difficulties. In R. Duit, F. Goldberg & H. Niedderer (Eds.): Research in Physics Learning-Theoretical Issues and Empirical Studies. Kiel: IPN, 278–2295.
Maloney, D. P. & Siegler, R. S. (1993). Conceptual competition in physics learning. International Journal of Science Education, 15, 283–295.
Niedderer, H. & Goldberg, F. (1995). Lernprozesse beim elektrischen Stromkreis. Zeitschrift für Didaktik der Naturwissenschaften, 1(1), 73–86.
Niedderer, H. (2001). Physics Learning as Cognitive Development. In R. H. Evans, A. M. Andersen & H. Sørensen (Eds.): Bridging Research Methodology and Research Aims. Student and Faculty Contributions from the 5th ESERA Summerschool in Gilleleje, Danmark. The Danish University of Education. Page 397–414. (ISBN: 87-7701-875-3).
Pantaleo, G. (1997). Explorations in Orienting vs. Multiple Perspectives. Lengerich: Pabst.
Petri, J. & Niedderer, H. (1998). A Learning Pathway in High-School Level Quantum Atomic Physics. International Journal of Science Education 9, 1075–1088.
Petri, J. & Niedderer, H. (2003). Atomic Physics in Upper Secondary School: Layers of Conceptions in Individual Cognitive Structure. In D. Psillos, P. Kariotoglou, V. Tselfes, E. Hatzikraniotis, G. Fassoulopoulos & M. Kallery (Eds.). Science Education in the Knowledge-Based Society, Kluwer Academic Publishers, 137–144.
Reif, F. & Larkin, J. H. (1991). Cognition in Scientific and Everyday Domains: Comparison and Learning Implications. Journal of Research in Science Teaching 28(9), 733–760.
Roth, M. (1996). Situated Cognition. In R. Duit & C. von Rhöneck (Eds.), Lernen in den Naturwissenschaften. Kiel: IPN.
Schnotz, W., Vosniadou, S. & Carretero, M. (Eds.), (1999). New Perspectives on Conceptual Change. Amsterdam: Pergamon.
Taber, K. S. (2000). Multiple frameworks?: Evidence of manifold conceptions in individual cognitive structure. International Journal of Science Education, 22, 399–417.
Tytler, R. (1998). The nature of students’ informal science conceptions. International Journal of Science Education, 20, 901–927.
Viennot, L. (2001). Reasoning in Physics — The part of common sense. Dordrecht: Kluwer.
Westra, A. (2003). A new approach to teaching/learning mechanics In Dusan Krnel (Ed.). Proceedings of the Sixth ESERA (European Science Education Research Association) Summerschool. CD, University of Ljubljana, Faculty of Education, 258–262.
Wittmann, M. C. (2002). The object coordination class applied to wave pulses — analysing student reasoning in wave physics. International Journal of Science Education, 24, 97–118.
Wodzinski, R. (1996). Untersuchungen von Lernprozessen beim Lernen Newtonscher Dynamik im Anfangsunterricht. Münster: Lit
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer
About this chapter
Cite this chapter
Hartmann, S., Niedderer, H. (2005). Parallel Conceptions in the Domain of Force and Motion. In: Boersma, K., Goedhart, M., de Jong, O., Eijkelhof, H. (eds) Research and the Quality of Science Education. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3673-6_37
Download citation
DOI: https://doi.org/10.1007/1-4020-3673-6_37
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3672-9
Online ISBN: 978-1-4020-3673-6
eBook Packages: Humanities, Social Sciences and LawHistory (R0)
