Skip to main content

Designing and Evaluating Short Science Teaching Sequences: Improving Student Learning

  • Chapter
Research and the Quality of Science Education

Abstract

This paper reports a study designed to provide evidence about the feasibility of designing short teaching sequences, based on insights from research and scholarship on teaching and learning science, which are measurably better at promoting conceptual understanding amongst students than the teaching approaches usually used by their schools. The research team worked in collaboration with a group of 9 teachers (3 biology, 3 chemistry, 3 physics) to design, implement, and evaluate 3 teaching sequences for use with students aged 11–15. The physics and biology teaching sequences were also implemented by other teachers (11 and 5 respectively) not involved in their design. Teachers implemented the physics and biology teaching sequences in ways broadly consistent with the planned approach. In all cases where a valid comparison can be made, students’ responses to diagnostic questions requiring the use of conceptual models to construct explanations were significantly better following the designed teaching sequences, than the responses of comparable students following the school’s usual teaching approach. The significance of these findings for research in science education, and for policy and practice relating to science teaching, are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bransford, J. D., Brown, A. L. & Cocking, R. R. (2000). How people learn: brain, mind, experience, and school. Washington, D. C.: National Academy Press.

    Google Scholar 

  • Driver, R., Leach, J., Scott, P. & Wood-Robinson, C. (1994). Young people’s understanding of science concepts: implications of cross-age studies for curriculum planning. Studies in Science Education, 24, 75–100.

    Google Scholar 

  • Duit, R. & Treagust, D. (1998). Learning in Science: From Behaviourism to Social Constructivism and Beyond. In B. Fraser & K. Tobin (Eds.), International Handbook of Science Education. Dordrecht, NC: Kluwer Academic Publishers.

    Google Scholar 

  • Leach, J. & Scott, P. (2002). Designing and evaluating science teaching sequences: An approach drawing upon the concept of learning demand and a social constructivist perspective on learning. Studies in Science Education, 38, 115–142.

    Google Scholar 

  • Leach, J. & Scott, P. (2003). Learning science in the classroom: Drawing on individual and social perspectives. Science and Education, 12(1), 91–113.

    Article  Google Scholar 

  • Matthews, M. (1997). Introductory Comments on Philosophy and Constructivism in Science Education. Science and Education, 6(1), 5–14.

    Google Scholar 

  • Mortimer, E.F. & Scott, P.H. (2002). Discursive activity on the social plane of high school science classrooms: a tool for analysing and planning teaching interactions. Paper presented at the AERA Annual Meeting as part of the BERA invited symposium: Developments in Sociocultural and Activity Theory Analyses of Learning in School, New Orleans, USA.

    Google Scholar 

  • Mortimer, E.F. & Scott, P.H. (2003). Meaning making in science classrooms. Milton Keynes: Open University Press.

    Google Scholar 

  • Pfundt, H. & Duit, R. (2001). Bibliography: Students’ Alternative Frameworks and Science Education (fifth ed.). IPN: Kiel.

    Google Scholar 

  • Viennot, L. (2003). Teaching physics. Dordrecht. NL: Kluwer Academic.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Leach, J., Ametller, J., Hind, A., Lewis, J., Scott, P. (2005). Designing and Evaluating Short Science Teaching Sequences: Improving Student Learning. In: Boersma, K., Goedhart, M., de Jong, O., Eijkelhof, H. (eds) Research and the Quality of Science Education. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3673-6_17

Download citation

Publish with us

Policies and ethics