Skip to main content

Part of the book series: NATO Security through Science Series ((NASTC))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. UNSCEAR, Ionizing Radiation: Sources and Biological Effects. New York: United Nations Publications, 1982.

    Google Scholar 

  2. C. Streffer, W.-U. Müller. Radiation risk from combined exposures to ionizing radiations and chemicals. Advances in Radiation Biology 11, 1984, pp. 173–210.

    CAS  Google Scholar 

  3. UNSCEAR, Combined Effects of Radiation and Other Agents. New York: United Nations Publication, 2000.

    Google Scholar 

  4. L.A. Dethlefsen, W.C. Dewey (Eds.) Cancer Therapy by Hyperthermia, Drugs and Radiation. National Cancer Institute Monograph 61, 1982.

    Google Scholar 

  5. A.M. Kuzin (Ed.) Synergism in Radiobiology. Pushchino, 1990 [in Russian].

    Google Scholar 

  6. V.G. Petin, G.P. Zhurakovskaya. The peculiarities of the interaction of radiation and hyperthermia in Saccharomyces cerevisiae irradiated with various dose rates. Yeast 11, 1995, pp. 549–554.

    Article  CAS  Google Scholar 

  7. V.G. Petin, G.P. Zhurakovskaya, L.N. Komarova. Fluence rate as a determinant of synergistic interaction under simultaneous action of UV light and mild heat in Saccharomyces cerevisiae. J. Photochem. Photobiol. B: Biology 38, 1997, pp. 123–128.

    Article  CAS  Google Scholar 

  8. V.G. Petin, G.P. Zhurakovskaya and others. Synergism of environmental factors as a function of their intensity. Russian J. Ecology 29, 1998, pp. 383–389.

    Google Scholar 

  9. J.K. Kim, V.G Petin, G.P. Zhurakovskaya. Exposure rate as a determinant of synergistic interaction of heat combined with ionizing or ultraviolet radiations in cell killing. J. Radiat. Res. 42, 2001, pp. 361–365.

    Article  CAS  Google Scholar 

  10. V.G. Petin, J.K. Kim and others. Some general regularities of synergistic interaction of hyperthermia with various physical and chemical inactivating agents. Int. J. Hyperthermia 18, 2002, pp. 40–49.

    Article  CAS  Google Scholar 

  11. F.A. Stewart, J. Denekamp. Combined X-rays and heating: is there a therapeutic gain? In: Cancer Therapy by Hyperthermia and Radiation, (Ed. by C. Streffer) Baltimore-Munich: Urban & Schwarzenberg, 1978, pp. 249–250.

    Google Scholar 

  12. M.C. Reynolds, D.M. Garst. Optimizing thermal and radiation effects for bacterial inactivation. Space Life Sci. 2, 1970, pp. 394–399.

    Article  CAS  Google Scholar 

  13. M.C. Reynolds, J.P. Brannen. Thermal enhancement of radiosterilization. In: Radiation Preservation of Food. Vienna: International Atomic Energy Agency. 1973, pp. 165–176.

    Google Scholar 

  14. Dineva S.B., Abramov V.I., Shevchenko V.A. The genetic effects of treatment of Arabidopsis thaliana seeds by the sodium lead of chronic irradiatied population. Genetics 29 (1993), pp. 1914–1920 [in Russian].

    CAS  Google Scholar 

  15. O.I. Kolganova, L.P. Zhavoronkov and others. Thermocompensative rabbit response to the microwave exposure at various environmental temperatures. Radiation Biology. Radioecology 41, 2001, pp. 712–717 [in Russian].

    CAS  Google Scholar 

  16. R. Trujillo, V.L. Dugan. Synergistic inactivation of viruses by heat and ionizing radiations. Biophys. J. 12, 1972, pp. 92–113.

    Article  CAS  Google Scholar 

  17. E. Ben-Hur, M.M. Elkind, B.V. Bronk. Thermally enhanced radioresponse of cultured Chinese hamster cells: inhibition of repair of sublethal damage and enhancement of lethal damage. Radiat. Res. 58, 1974, pp. 38–51.

    CAS  Google Scholar 

  18. E. Ben-Hur. Mechanisms of the synergistic interaction between hyperthermia and radiation in cultured mammalian cells. J. Radiat. Res, 17, 1976, pp. 92–98.

    CAS  Google Scholar 

  19. M. Urano, J. Kahn and others. The cytotoxic effect of cis-diamminedichloroplatinum (II) on culture Chinese hamster ovary cells at elevated temperatures: Arrhenius plot analysis. Int. J. Hyperthermia 6, 1990, pp. 581–590.

    Article  CAS  Google Scholar 

  20. H.A. Johnson, M. Pavelec. Thermal enhancement of thio-TEPA cytotoxicity. J. Natl. Cancer Inst. 50, 1973, pp. 903–908.

    CAS  Google Scholar 

  21. Yu.G. Kapul’tsevich. Quantitative Regularities of Cell Radiation Damage. Moscow: Energoatomizdat, 1978 [in Russian].

    Google Scholar 

  22. V.I. Korogodin. The study of post-irradiation recovery of yeast: the ‘premolecular period’. Mutation Res. 289, 1993, pp. 17–26.

    CAS  Google Scholar 

  23. V.G. Petin, I.P. Berdnikova. Effect of elevated temperatures on the radiation sensitivity of yeast cells of different species. Radiat. Environm. Biophys. 16, 1979, pp. 49–61.

    Article  CAS  Google Scholar 

  24. A. Kumar, J. Kiefer and others. Inhibition of recovery from potentially lethal damage by chemicals in Chinese hamster V79 A cells. Radiat. Environ. Biophys., 24 (1985) 89–98.

    Article  CAS  Google Scholar 

  25. R.H. Haynes. The interpretation of microbial inactivation and recovery phenomena. Radiat. Res. 6(Suppl.), 1966, pp. 1–29.

    Google Scholar 

  26. V.G. Petin, V.P. Komarov. Mathematical description of synergistic interaction of hyperthermia and ionizing radiation. Mathem. Biosci. 146, 1997, pp. 115–130.

    Article  CAS  Google Scholar 

  27. V.G. Petin, G.P. Zhurakovskaya, L.N. Komarova. Mathematical description of combined action of ultrasound and hyperthermia on yeast cells. Ultrasonics 37, 1999, 79–83.

    Article  CAS  Google Scholar 

  28. V.G. Petin, J.K. Kim and others. Mathematical description of synergistic interaction of UV-light and hyperthermia for yeast cells. J. Photochem. Photobiol. B: Biology 55, 2000, pp. 74–79.

    Article  CAS  Google Scholar 

  29. H.P. Leenhouts, K.H. Chadwick. An analysis of synergistic sensitization. Br. J. Cancer 37, (Suppl. 3), 1978, pp. 198–201.

    CAS  Google Scholar 

  30. M.S.S. Murthy, V.V., Deorukhakar, B.S. Rao. Hyperthermic inactivation of diploid yeast and interaction of damage caused by hyperthermia and ionizing radiation. Int. J. Radiat. Biol. 35, 1979, pp. 333–341.

    CAS  Google Scholar 

  31. M. Zaider, H.H. Rossi. The synergistic effects of different radiations. Radiat. Res. 83, 1980, pp. 732–739.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Petin, V.G., Zhurakovskaya, G.P., Kim, J.K. (2005). Synergetic Effects of Different Pollutants and Equidosimetry. In: Bréchignac, F., Desmet, G. (eds) Equidosimetry — Ecological Standardization and Equidosimetry for Radioecology and Environmental Ecology. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3650-7_24

Download citation

Publish with us

Policies and ethics