Skip to main content

LINEAR AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS

  • Conference paper
Delay Differential Equations and Applications

Part of the book series: NATO Science Series ((NAII,volume 205))

Abstract

Throughout these notes r is a fixed constant, 0 ≤ r < ∞. We denote by C the Banach space of continuous functions [–r, 0] → Cn with norm ║ø║ = sup r≤θ≤0 |ø(θ)|, where | · | is any vector norm in Cn. If x : [–r, α) → Cn, α > 0, is a continuous function, then x tC, 0 ≤ t < α, is defined by

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Auslander and D. Buchsbaum, Groups, Rings, Modules, Harper and Row, New York 1974.

    MATH  Google Scholar 

  2. R. Bellman and K. L. Cooke, Differential-Difference Equations, Academic Press, New York 1963.

    MATH  Google Scholar 

  3. N. Bourbaki, Éléments de Mathématique, Livre II: Algèbre, Chapitre VII: Modules sur les Anneaux Principaux, Hermann, Paris 1964.

    Google Scholar 

  4. N. Bourbaki, Éléments de Mathématique, Livre II: Algèbre, Chapitre II: Algèbre Linéaire, Hermann, Paris 1970.

    Google Scholar 

  5. R. P. Boas, Jr., Entire Function, Academic Press, New York 1954.

    Google Scholar 

  6. R. H. Cameron and W. T. Martin, An unsymmetric Fubini theorem, Bull. Amer. Math. Soc. 47 (1941), 121–125.

    Article  MathSciNet  Google Scholar 

  7. G. Doetsch, Handbuch der Laplace-Transformation, Vols. I – III, Birkhäuser Verlag, Basel 1950/55/56.

    Google Scholar 

  8. F. R. Gantmacher, Matrizenrechnung, Vol. I, Deutscher Verlag der Wissenschaften, Berlin 1965.

    Google Scholar 

  9. W. Gröbner, Matrizenrechnung, Bibliographisches Institut Mannheim, Mannheim 1966.

    MATH  Google Scholar 

  10. J. K. Hale, Functional Differential Equations, Springer Verlag, New York 1971.

    MATH  Google Scholar 

  11. Hale, J.K., LaSalle, J.P. and M. Slemrod (1973) Theory of a general classof dissipative processes. J. Math. Anal. Appl.39, 177–191.

    Article  MathSciNet  Google Scholar 

  12. J. K. Hale and S. M. Verduyn Lunel, Introduction to Functional Differential Equations, Springer Verlag, Berlin 1993.

    MATH  Google Scholar 

  13. D. Henry, Small solutions of linear autonomous functional differential equations, J. Differential Eqs. 8 (1970), 494–501.

    Article  MathSciNet  MATH  Google Scholar 

  14. K. Hensel and G. Landsberg, Theorie der algebraischen Funktionen einer Variablen, Leipzig, 1902.

    Google Scholar 

  15. E. Hewitt and K. Stromberg, Real and Abstract Analysis, Springer Verlag, Berlin 1969.

    MATH  Google Scholar 

  16. N. Jacobson, Lectures in Abstract Algebra, Vol. II: Linear Algebra, van Nostrand, Princeton, N. J., 1953.

    Google Scholar 

  17. F. Kappel, Linear autonomous functional differential equations in the state space C, Institute für Mathematik, Universität und Technische Universität Graz, Technical Report No. 34–1984, January 1984.

    Google Scholar 

  18. F. Kappel, On degeneracy of functional-differential equations, J. Differential Eqs. 22 (1976), 250–267.

    Article  MathSciNet  MATH  Google Scholar 

  19. F. Kappel, Degenerate difference-differential equations: algebraic theory, J. Differential Eqs. 24 (1977), 99–126.

    Article  MathSciNet  MATH  Google Scholar 

  20. F. Kappel and H. K. Wimmer, An elementary divisor theory for autonomous linear functional differential equations, J. Differential Eqs. 21 (1976), 134–147.

    Article  MathSciNet  Google Scholar 

  21. S. Khabbaz and G. Stengle, Normal forms for analytic matrix valued functions, in “Proceedings of the Liverpool Singularities Symposium II”, Springer Verlag, New York 1971.

    Google Scholar 

  22. V.Lakshmikantham and S.Leela: Differential and integral inequalities, theory and applications, volume 1. Academic Press. (1969).

    Google Scholar 

  23. B. J. Levin, Distribution of Zeros of Entire Functions, Amer. Math. Soc., Providence, R. I., 1964.

    Google Scholar 

  24. B. W. Levinger, A folk theorem in functional differential equations, J. Differential Eqs. 4 (1968), 612–619.

    Article  MathSciNet  MATH  Google Scholar 

  25. S. M. V. Lunel, Exponential type calculus for linear delay equations, PhD-Thesis, Centrum voor Wiskunde en Informatica, Amsterdam 1988.

    Google Scholar 

  26. J. Mallet-Paret,Roger D. Nussbaum and P. Paraskevopoulos, ”Periodic Solutions for Functional Differential Equations with Multiple State-Dependent Time Lags, LCDS 9316 December (1993).

    Google Scholar 

  27. E. Oeljeklaus and R. Remmert, Lineare Algebra I, Springer Verlag, New York 1974.

    MATH  Google Scholar 

  28. A. Pazy, Semigroups of Linear Operators and Applications to Partial Differential Equations, Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  29. O. Perron, Algebra I, de Gruyter, Berlin 1932.

    Google Scholar 

  30. L. Weiss, On the controllability of delay-differential systems, SIAM J. Control 5 (1967), 575–587.

    Article  MathSciNet  Google Scholar 

  31. K. Yosida, Functional Analysis, Springer Verlag, Berlin 1974.

    MATH  Google Scholar 

  32. A. M. Zverkin, On the pointwise completeness of systems with delay, Differencial’nye Uravnenija 9 (1973), 430–436.

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Kappel, F. (2006). LINEAR AUTONOMOUS FUNCTIONAL DIFFERENTIAL EQUATIONS. In: Arino, O., Hbid, M., Dads, E.A. (eds) Delay Differential Equations and Applications. NATO Science Series, vol 205. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3647-7_3

Download citation

Publish with us

Policies and ethics