Abstract
Localized cancer, before it metastasizes, can be cured by surgery. The high mortality rate associated with most cancers, however, is due to the propensity of tumors to metastasize while the primary tumor is small and undetected. Metastasis, which occurs through a complex series of events, involves various gene products that dictate the progression of a cancer from a precursor lesion, to localized disease, and finally to metastatic disease. The expression of certain genes or alterations in gene structure or gene products may result in the progression of benign tumor cells to an invasive and metastatic state. Thus, the process of cancer metastasis requires, among other steps, changes in signaling pathways, activation of target gene products, enhanced cell survival, and increased epithelial-to-mesenchymal transition. A proper understanding of the progression of tumors to the metastatic stage and of the events that occur in highly malignant cells is important in the development of new therapeutic approaches for the diagnosis, treatment, and prognosis of highly progressive tumors. The molecular mechanisms that cause a cancer to exhibit more malignant behavior are widely believed to involve the deregulation of genetic and epigenetic cascades. We will here highlight the discovery and emerging significance of one family of regulators or chromatin modifiers, namely, the metastasis-associated antigens.
Key words
- Metastasis-associated protein 1 (MTA1)
- coactivators
- corepressors
- estrogen receptor
- metastasis
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
Toh Y., Pencil S. D., Nicolson G. L. A novel candidate metastasis-associated gene, mta1, differentially expressed in highly metastatic mammary adenocarcinoma cell lines. cDNA cloning, expression, and protein analyses. J Biol Chem, 1994; 269:22958–22963.
Mazumdar A., Wang R. A., Mishra S. K., Adam L., Bagheri-Yarmand R., Mandal M., Vadlamudi R. K., Kumar R. Transcriptional repression of oestrogen receptor by metastasis-associated protein 1 corepressor. Nat Cell Biol, 2001; 3:30–37.
Futamura M., Nishimori H., Shiratsuchi T., Saji Nakamura Y., Tokino T. Molecular cloning, mapping, and characterization of a novel human gene, MTA1-L1, showing, homology to a metastasis-associated gene, MTA1. J Hum Genet, 1999; 44:52–56.
Zhang Y., Ng H. H, Erdjument-Bromage H., Tempst P., Bird A., Reinberg D. Analysis of the NuRD subunits reveals a histone deacetylase core complex and a connection with DNA methylation. Genes Dev, 1999; 13:1924–1935.
Cui Q., Takiguchi S., Matsusue K., Toh Y., Yoshida M. A. Assignment of the human metastasis-associated gene 1 (MTA1) to human chromosome band 14q32.3 by fluorescence in situ hybridization. Cytogenet Cell Genet, 2001; 93:139–140.
Cui Q., Matsusue K., Toh Y., Kono A., Takiguchi S. Assignment of the metastasis-associated gene (Mta1) to mouse chromosome band 12F and the metastasis-associated gene 2 (Mta2) to mouse chromosome band 19B by fluorescence in situ hybridization. Cytogenet Cell Genet, 2001; 94:246–247.
Moon W. S., Chang K., Tarnawski A S. Overexpression of metastatic tumor antigen 1 in hepatocellular carcinoma: relationship to vascular invasion and estrogen receptor-alpha. Hum Pathol 2004; 35:424–429.
Kleene R., Zdzieblo J., Wege K., Kern H. F. A novel zymogen granule protein (ZG29p) and the nuclear protein MTA1p are differentially expressed by alternative transcription initiation in pancreatic acinar cells of the rat. J Cell Sci, 1999; 112:2539–2548.
Kleene R., Classen B., Zdzieblo J., Schrader M. SH3 binding sites of ZG29p mediate an interaction with amylase and are involved in condensation-sorting in the exocrine rat pancreas. Biochemistry, 2000; 39:9893–9900.
Kumar R., Wang R. A., Mazumdar A., Talukder A. H., Mandal M., Yang Z., Bagheri-Yarmand R., Sahin A., Hortobagyi G., Adam L., Barnes C. J., Vadlamudi R.K. A naturally occurring MTA1 variant sequesters oestrogen receptor-alpha in the cytoplasm. Nature, 2002; 418:654–657.
Mishra S. K., Yang Z., Mazumdar A., Talukder A. H., Larose L., Kumar R. Metastatic tumor antigen 1 short form (MTA1s) associates with casein kinase I-γ2, an estrogen-responsive kinase. Oncogene, 2004; 23:4422–4429.
Xue Y., Wong J., Moreno G. T., Young M. K., Cote J, Wang W. NURD, a novel complex with both ATP-dependent chromatin-remodeling and histone deacetylase activities. Mol Cell, 1998; 2:851–861.
Bowen N. J., Fujita N., Kajita M., Wade P. A. Mi-2/NuRD: multiple complexes for many purposes. Biochim Biophys Acta, 2004; 1677:52–57.
Fujita N., Jaye D. L., Kajita M., Geigerman C., Moreno C. S., Wade P. A. MTA3, a Mi-2/NuRD complex subunit, regulates an invasive growth pathway in breast cancer. Cell, 2003; 113:207–219.
Brownell J. E., Zhou J., Ranalli T., Kobayashi R., Edmondson D. G., Roth S. Y., Allis C. D. Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p linking histone acetylation to gene activation. Cell, 1996; 84:843–851.
Toh Y., Oki E., Oda S., Tokunaga E., Ohno S., Maehara Y., Nicolson G. L., Sugimachi K. Overexpression of the MTA1 gene in gastrointestinal carcinomas: correlation with invasion and metastasis. Int J Cancer, 1997; 74:459–463.
Toh Y., Kuwano H., Mori M., Nicolson G. L., Sugimachi K. Overexpression of metastasis-associated MTA1 mRNA in invasive oesophageal carcinomas. Br J Cancer, 1999; 79:1723–1726.
Toh Y., Ohga T., Endo K. Adachi E., Kusumoto H., Haraguchi M., Okamura T., Nicolson G. L. Expression of the metastasis-associated MTA1 protein and its relationship to deacetylation of the histone H4 in esophageal squamous cell carcinomas. Int J Cancer, 2004; 110:362–367.
Iguchi H., Imura G., Toh Y., Ogata Y. Expression of MTA1, a metastasis-associated gene with histone deacetylase activity in pancreatic cancer. Int J Oncol, 2000; 16:1211–1214.
Yi S., Guangqi H., Guoli H. The association of the expression of MTA1, nm23H1 with the invasion, metastasis of ovarian carcinoma. Chin Med Sci J, 2003; 18:87–92.
Sasaki H., Yukiue H., Kobayashi Y., Nakashima Y., Kaji M., Fukai I., Kiriyama M., Yamakawa Y., Fujii Y. Expression of the MTA1 mRNA in thymoma patients. Cancer Lett, 2001; 174:159–163.
Sasaki H., Moriyama S., Nakashima Y., Kobayashi Y., Yukiue H., Kaji M., Fukai I., Kiriyama M., Yamakawa Y., Fujii Y. Expression of the MTA1 mRNA in advanced lung cancer. Lung Cancer, 2002; 35:149–154.
Hofer M. D., Kuefer R., Varambally S., Li H., Ma J., Shapiro G. I., Gschwend J. E., Hautmann R. E., Sanda M. G., Giehl K., Menke A., Chinnaiyan A. M., Rubin M. A. The role of metastasis-associated protein 1 in prostate cancer progression. Cancer Res 2004; 64:825–829.
Hamatsu T., Rikimaru T., Yamashita Y., Aishima S., Tanaka S., Shirabe K., Shimada M., Toh Y., Sugimachi K. The role of MTA1 gene expression in human hepatocellular carcinoma. Oncol Re,p 2003; 10:599–604.
Mahoney M. G., Simpson A., Jost M., Noe M., Kari C., Pepe D., Choi Y. W., Uitto J., Rodeck U. Metastasis-associated protein (MTA)1 enhances migration, invasion, and anchorage-independent survival of immortalized human keratinocytes. Oncogene, 2002; 21:2161–2170.
Hofer M. D., Menke A., Genze F., Gierschik P., Giehl K. Expression of MTA1 promotes motility and invasiveness of PANC-1 pancreatic carcinoma cells. Br J Cancer, 2004; 90:455–462.
Nawa A., Nishimori K., Lin P., Maki Y., Moue K., Sawada H., Toh Y., Fumitaka K., Nicolson G. L. Tumor metastasis-associated human MTA1 gene: its deduced protein sequence, localization, and association with breast cancer cell proliferation using antisense phosphorothioate oligonucleotides. J Cell Biochem, 2000; 79:202–212.
Luo J., Su F., Chen D., Shiloh A., Gu W. Deacetylation of p53 modulates its effect on cell growth and apoptosis. Nature, 2000; 408:377–381.
Fujita N., Jaye D. L., Geigerman C., Akyildiz A., Mooney M. R., Boss J. M., Wade P. A. MTA3 and the Mi-2/NuRD complex regulate cell fate during B lymphocyte differentiation. Cell, 2004; 119:75–86.
Talukder A. H., Mishra S. K., Mandal M., Balasenthil S., Mehta S., Sahin A. A., Barnes C. J., Kumar R. MTA1 interacts with MAT1, a cyclin-dependent kinase-activating kinase complex ring finger factor, and regulates estrogen receptor transactivation functions. J Biol Chem, 2003; 278:11676–11685.
Mishra S. K., Mazumdar A., Vadlamudi R. K., Li F., Wang R. A., Yu W., Jordan V. C., Santen R. J., Kumar R. MICoA, a novel metastasis-associated protein 1 (MTA1) interacting protein coactivator, regulates estrogen receptor-alpha transactivation functions. J Biol Chem, 2003; 278:19209–19219.
Talukder A. H., Gururaj A., Mishra S. K., Vadlamudi R. K., Kumar R. Metastasis-associated protein 1 interacts with NRIF3, an estrogen-inducible nuclear receptor coregulator. Mol Cell Biol, 2004; 24:6581–6591.
Mishra S. K., Talukder A. H., Gururaj A. E., Yang Z., Singh R. R., Mahoney M. G., Franci C., Vadlamudi R. K., Kumar R. Upstream determinants of estrogen receptor-alpha regulation of metastatic tumor antigen 3 pathway. J Biol Chem, 2004; 279:32709–32715.
Fujita N., Kajita M., Taysavang P., Wade P. A. Hormonal regulation of MTA3 transcription in breast cancer cells. Mol Endocrinol, 2004 Sep 9 [Epub ahead of print].
Bagheri-Yarmand R., Talukder A. H., Wang R. A., Vadlamudi R. K., Kumar R. Metastasis-associated protein 1 deregulation causes inappropriate mammary gland development and tumorigenesis. Development, 2004; 131: 3469–3479.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer
About this chapter
Cite this chapter
Balasenthil, S., Kumar, R. (2005). Molecular Mechanisms of the Metastasis-Associated Gene Family of Coregulators: Role in Cancer and Invasion. In: Esteller, M. (eds) DNA Methylation, Epigenetics and Metastasis. Cancer Metastasis — Biology and Treatment, vol 7. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3642-6_9
Download citation
DOI: https://doi.org/10.1007/1-4020-3642-6_9
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3641-5
Online ISBN: 978-1-4020-3642-2
eBook Packages: Biomedical and Life SciencesBiomedical and Life Sciences (R0)
