Epigenetic Dysregulation of Maspin (SerpinB5) in Cancer Invasion and Metastasis

  • Bernard W. Futscher
  • Frederick E. Domann
Part of the Cancer Metastasis — Biology and Treatment book series (CMBT, volume 7)


The goal of this chapter is to promote the value of studying maspin regulation as a paradigm for loss of transcriptional control during cancer progression and to highlight the importance of this endeavor in developing a comprehensive picture of the epigenetics of the malignant phenotype. We will attempt to do this through a discussion of the structure and functions of the serpin superfamily of proteins, with an emphasis on maspin, its discovery as a tumor suppressor, and its functional role in cancer. The control of maspin expression in normal tissue by epigenetic mechanisms will be described and how this underlying mechanism is compromised in cancer leading to the inappropriate silencing of maspin in cancers derived from maspin-positive cell types, as well as the activation of maspin in cancers derived from normally maspin-negative cell types. Finally, we will close with speculation that maspin may represent an inaugural member of a class of cell-type restricted genes involved in cancer cause and progression that are controlled by epigenetic mechanisms. During transformation, epigenetic instability and mischief results in a loss of control in the expression of these genes. We propose that these genes, through metastable epigenetic switching mechanisms, can be turned off and on in response to environmental stresses and cues in the cancer cell, thereby allowing tumor cells a phenotypic plasticity that appears necessary for the challenges a tumor cell and its progeny must undertake to migrate from primary tumor site to distant metastatic site. It is proposed that this epigenetic switch can be targeted by therapeutics designed to transcriptional reprogram tumor cells and flip the switch back to non-malignant behavior.

Key words

maspin methylation histone chromatin tissue-specific expression p53 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Silverman G. A., Bird P. I., Carrell R. W., Church F. C., Coughlin P. B., Gettins P. G., Irving J. A., Lomas D. A., Luke C. J., Moyer R. W., Pemberton P. A., Remold-O'Donnell E., Salvesen G. S., Travis J. and Whisstock J. C. The serpins are an expanding superfamily of structurally similar but functionally diverse proteins. Evolution, mechanism of inhibition, novel functions, and a revised nomenclature. J Biol Chem, 2001; 276: 33293–33296.CrossRefPubMedGoogle Scholar
  2. 2.
    Irving J. A., Pike R. N., Lesk A. M. and Whisstock J. C. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res, 2000; 10: 1845–1864.CrossRefPubMedGoogle Scholar
  3. 3.
    Lomas D. A. and Carrell R. W. Serpinopathies and the conformational dementias. Nat Rev Genet, 2002; 3: 759–768.CrossRefPubMedGoogle Scholar
  4. 4.
    Fitzpatrick P. A., Wong D. T., Barr P. J. and Pemberton P. A. Functional implications of the modeled structure of maspin. Protein Eng, 1996; 9: 585–589.PubMedGoogle Scholar
  5. 5.
    Hopkins P. C. and Whisstock J. Function of maspin. Science, 1994; 265: 1893–1894.PubMedGoogle Scholar
  6. 6.
    Al-Ayyoubi M., Gettins P. G. and Volz K. Crystal structure of human maspin, a serpin with anti-tumor properties: Maspin's reactive center loop is exposed but constrained. J Biol Chem, 2004.Google Scholar
  7. 7.
    Pemberton P. A., Wong D. T., Gibson, H. L., Kiefer M. C., Fitzpatrick P. A., Sager R. and Barr P. J. The tumor suppressor maspin does not undergo the stressed to relaxed transition or inhibit trypsin-like serine proteases. Evidence that maspin is not a protease inhibitory serpin. J Biol Chem, 1995; 270: 15832–15837.CrossRefPubMedGoogle Scholar
  8. 8.
    Silverman G. A., Whisstock J. C., Askew D. J., Pak S. C., Luke C. J., Cataltepe S., Irving J. A. and Bird P. I. Human clade B serpins (ov-serpins) belong to a cohort of evolutionarily dispersed intracellular proteinase inhibitor clades that protect cells from promiscuous proteolysis. Cell Mol Life Sci, 2004; 61: 301–325.CrossRefPubMedGoogle Scholar
  9. 9.
    Pardee A. B. Ruth Sager, Geneticist. In: M. J. C. Hendrix (ed.), 2002; Maspin, pp. 1–7. Georgetown: Landes Biosciences.Google Scholar
  10. 10.
    Zhang M. S., S: Pardee A. B. Maspin in the Sager Laboratory. In: M. J. C. Hendrix (ed.), 2002; Maspin. Georgetown: Landes Biosciences.Google Scholar
  11. 11.
    Zou Z., Anisowicz A., Hendrix M. J., Thor A., Neveu M., Sheng S., Rafidi K., Seftor E. and Sager R. Maspin, a serpin with tumor-suppressing activity in human mammary epithelial cells. Science, 1994; 263: 526–529.PubMedGoogle Scholar
  12. 12.
    Sager R., Sheng S., Anisowicz A., Sotiropoulou G., Zou Z., Stenman G., Swisshelm K., Chen Z., Hendrix M. J., Pemberton P, and et al. RNA genetics of breast cancer: maspin as paradigm. Cold Spring Harb Symp Quant Biol, 1994; 59: 537–546.Google Scholar
  13. 13.
    Sheng S., Carey J., Seftor E. A., Dia, L., Hendrix M. J. and Sager R. Maspin acts at the cell membrane to inhibit invasion and motility of mammary and prostatic cancer cells. Proc Natl Acad Sci U S A, 1996; 93: 11669–11674.CrossRefGoogle Scholar
  14. 14.
    Seftor R. E., Seftor E. A., Sheng S., Pemberton P. A., Sager R. and Hendrix M. J. maspin suppresses the invasive phenotype of human breast carcinoma. Cancer Res, 1998; 58:5681–5685.PubMedGoogle Scholar
  15. 15.
    Abraham S., Zhang W., Greenberg N. and Zhang M. Maspin functions as tumor suppressor by increasing cell adhesion to extracellular matrix in prostate tumor cells. J Urol, 2003; 169: 1157–1161.CrossRefPubMedGoogle Scholar
  16. 16.
    Gao F., Shi H. Y., Daughty C., Cella N. and Zhang M. Maspin plays an essential role in early embryonic development. Development, 2004; 131: 1479–1489.CrossRefPubMedGoogle Scholar
  17. 17.
    Ngamkitidechakul C., Warejcka D. J., Burke J. M., O'Brien W. J. and Twining S. S. Sufficiency of the reactive site loop of maspin for induction of cell-matrix adhesion and inhibition of cell invasion. Conversion of ovalbumin to a maspin-like molecule. J Biol Chem, 2003; 278: 31796–31806.CrossRefPubMedGoogle Scholar
  18. 18.
    Blacque O. E. and Worrall D. M. Evidence for a direct interaction between the tumor suppressor serpin, maspin, and types I and III collagen. J Biol Chem, 2002; 277: 10783–10788.CrossRefPubMedGoogle Scholar
  19. 19.
    Odero-Marah V. A., Khalkhali-Ellis Z., Chunthapong J., Amir S., Sefto, R. E., Seftor E. A. and Hendrix M. J. Maspin regulates different signaling pathways for motility and adhesion in aggressive breast cancer cells. Cancer Biol Ther, 2003; 2: 398–403.PubMedGoogle Scholar
  20. 20.
    Zhang M., Volpert O., Shi Y. H. and Bouck N. Maspin is an angiogenesis inhibitor. Nat Med, 2000; 6: 196–199.CrossRefPubMedGoogle Scholar
  21. 21.
    Sheng S., Pemberton P. A. and Sager R. Production, purification, and characterization of recombinant maspin proteins. J Biol Chem, 1994; 269: 30988–30993.PubMedGoogle Scholar
  22. 22.
    Shi H. Y., Lydon J. P. and Zhang M. Hormonal defect in maspin heterozygous mice reveals a role of progesterone in pubertal ductal development. Mol Endocrinol, 2004; 18: 2196–2207.CrossRefPubMedGoogle Scholar
  23. 23.
    Zhang M., Magit D., Botteri F., Shi H. Y., He K., Li M., Furth P. and Sager R. Maspin plays an important role in mammary gland development. Dev Biol, 1999; 215: 278–287.CrossRefPubMedGoogle Scholar
  24. 24.
    Zhang M., Shi Y., Magit D., Furth P. A. and Sager R. Reduced mammary tumor progression in WAP-TAg/WAP-maspin bitransgenic mice. Oncogene, 2000; 19: 6053–6058.CrossRefPubMedGoogle Scholar
  25. 25.
    Zhang M., Maass N., Magit D. and Sager R. Transactivation through Ets and Ap1 transcription sites determines the expression of the tumor-suppressing gene maspin. Cell Growth Differ 1997; 8: 179–186.PubMedGoogle Scholar
  26. 26.
    Zhang M., Magit D. and Sager R. Expression of maspin in prostate cells is regulated by a positive ets element and a negative hormonal responsive element site recognized by androgen receptor. Proc Natl Acad Sci U S A, 1997; 94: 5673–5678.CrossRefPubMedGoogle Scholar
  27. 27.
    Zou Z., Gao C., Nagaich A. K., Connell T., Saito S., Moul J. W., Seth P., Appella E. and Srivastava S. p53 regulates the expression of the tumor suppressor gene maspin. J Biol Chem, 2000; 275: 6051–6054.CrossRefPubMedGoogle Scholar
  28. 28.
    Oshiro M. M., Watts G. S., Wozniak R. J., Junk D. J., Munoz-Rodriguez J. L., Domann F. E. and Futscher B. W. Mutant p53 and aberrant cytosine methylation cooperate to silence gene expression. Oncogene, 2003; 22: 3624–3634.CrossRefPubMedGoogle Scholar
  29. 29.
    Kim S., Han J., Kim J. and Park C. Maspin expression is transactivated by p63 and is critical for the modulation of lung cancer progression. Cancer Res, 2004; 64: 6900–6905.CrossRefPubMedGoogle Scholar
  30. 30.
    Spiesbach K., Tannapfel A., Mossner J. and Engeland K. TAp63gamma can substitute for p53 in inducing expression of the maspin tumor suppressor. Int J Cancer, 2004.Google Scholar
  31. 31.
    Gardiner-Garden M. and Frommer M. CpG islands in vertebrate genomes. J Mol Biol, 1987; 196: 261–282.CrossRefPubMedGoogle Scholar
  32. 32.
    Futscher B. W., Oshiro M. M., Wozniak R. J., Holtan N., Hanigan C. L., Duan H. and Domann F. E. Role for DNA methylation in the control of cell type specific maspin expression. Nat Genet, 2002; 31: 175–179.CrossRefPubMedGoogle Scholar
  33. 33.
    Holliday R. and Pugh J. E. DNA modification mechanisms and gene activity during development. Science, 1975; 187: 226–232..PubMedGoogle Scholar
  34. 34.
    Riggs A. D. X inactivation, differentiation, and DNA methylation. Cytogenet Cell Genet, 1975; 14: 9–25.PubMedGoogle Scholar
  35. 35.
    Jones P. A. and Laird P. W. Cancer epigenetics comes of age. Nat Genet, 1999; 21: 163–167.CrossRefPubMedGoogle Scholar
  36. 36.
    Baylin S. B., Herman J. G., Graff J. R., Vertino P. M. and Issa J. P. Alterations in DNA methylation: a fundamental aspect of neoplasia. Adv Cancer Res, 1998; 72: 141–196.PubMedGoogle Scholar
  37. 37.
    Baylin S. B. and Herman J. G. DNA hypermethylation in tumorigenesis: epigenetics joins genetics. Trends Genet, 2000; 16: 168–174.CrossRefPubMedGoogle Scholar
  38. 38.
    Domann F. E., Rice J. C., Hendrix M. J. and Futscher B. W. Epigenetic silencing of maspin gene expression in human breast cancers. Int J Cancer, 2000; 85: 805–810.CrossRefPubMedGoogle Scholar
  39. 39.
    Maass N., Biallek M., Rosel F., Schem C., Ohike N., Zhang M., Jonat W. and Nagasaki K. Hypermethylation and histone deacetylation lead to silencing of the maspin gene in human breast cancer. Biochem Biophys Res Commun, 2002; 297: 125–128.CrossRefPubMedGoogle Scholar
  40. 40.
    Martin K. J., Kritzman B. M., Price L. M., Koh B., Kwan C. P., Zhang X., Mackay A., O'Hare M. J., Kaelin C. M., Mutter G. L., Pardee A. B. and Sager R. Linking gene expression patterns to therapeutic groups in breast cancer. Cancer Res, 2000; 60: 2232–2238.PubMedGoogle Scholar
  41. 41.
    Czerwenka K. F., Manavi M., Hosmann J., Jelincic D., Pischinger K. I., Battistutti W. B., Behnam M. and Kubista E. Comparative analysis of two-dimensional protein patterns in malignant and normal human breast tissue. Cancer Detect Prev, 2001; 25: 268–279.PubMedGoogle Scholar
  42. 42.
    Maass N., Hojo T., Rosel F., Ikeda T., Jonat W. and Nagasaki K. Down regulation of the tumor suppressor gene maspin in breast carcinoma is associated with a higher risk of distant metastasis. Clin Biochem, 2001; 34: 303–307.CrossRefPubMedGoogle Scholar
  43. 43.
    Streuli C. H. Maspin is a tumour suppressor that inhibits breast cancer tumour metastasis in vivo. Breast Cancer Res, 2002; 4: 137–140.CrossRefPubMedGoogle Scholar
  44. 44.
    Mohsin S. K., Zhang M., Clark G. M. and Craig Allred D. Maspin expression in invasive breast cancer: association with other prognostic factors. J Pathol, 2003; 199: 432–435.PubMedGoogle Scholar
  45. 45.
    Maass N., Teffner M., Rosel F., Pawaresch R., Jonat W., Nagasaki K. and Rudolph P. Decline in the expression of the serine proteinase inhibitor maspin is associated with tumour progression in ductal carcinomas of the breast. J Pathol, 2001; 195: 321–326.CrossRefPubMedGoogle Scholar
  46. 46.
    Futscher B. W., O'Meara M. M., Kim C. J., Rennels M. A., Lu D., Gruman L. M., Seftor R. E., Hendrix M. J. and Domann F. E. Aberrant methylation of the maspin promoter is an early event in human breast cancer. Neoplasia, 2004; 6: 380–389.PubMedGoogle Scholar
  47. 47.
    Sternlicht M. D., Safarians S., Rivera S. P. and Barsky S. H. Characterizations of the extracellular matrix and proteinase inhibitor content of human myoepithelial tumors. Lab Invest, 1996; 74: 781–796.PubMedGoogle Scholar
  48. 48.
    Reis-Filho J. S., Milanezi F., Silva P. and Schmitt F. C. Maspin expression in myoepithelial tumors of the breast. Pathol Res Pract, 2001; 197: 817–821.CrossRefPubMedGoogle Scholar
  49. 49.
    Maass N., Hojo T., Zhang M., Sager R., Jonat W. and Nagasaki K. Maspin—a novel protease inhibitor with tumor-suppressing activity in breast cancer. Acta Oncol, 2000; 39:931–934.PubMedGoogle Scholar
  50. 50.
    Duan H., Zhang H. J., Yang J. Q., Oberley L. W., Futscher B. W. and Domann F. E. MnSOD up-regulates maspin tumor suppressor gene expression in human breast and prostate cancer cells. Antioxid Redox Signal, 2003; 5: 677–688.CrossRefPubMedGoogle Scholar
  51. 51.
    Machtens S., Serth J., Bokemeyer C., Bathke W., Minssen A., Kollmannsberger C., Hartmann J., Knuchel R., Kondo M., Jonas U. and Kuczyk M. Expression of the p53 and Maspin protein in primary prostate cancer: correlation with clinical features. Int J Cancer, 2001; 95: 337–342.CrossRefPubMedGoogle Scholar
  52. 52.
    Zou Z., Zhang W., Young D., Gleave M. G., Rennie P., Connell T., Connelly R., Moul J., Srivastava S. and Sesterhenn I. Maspin expression profile in human prostate cancer (CaP) and in vitro induction of Maspin expression by androgen ablation. Clin Cancer Res, 2002; 8: 1172–1177.Google Scholar
  53. 53.
    Ohike N., Maass N., Mundhenke C., Biallek M., Zhang M., Jonat W., Luttges J., Morohoshi T., Kloppel G. and Nagasaki K. Clinicopathological significance and molecular regulation of maspin expression in ductal adenocarcinoma of the pancreas. Cancer Lett, 2003; 199: 193–200.CrossRefPubMedGoogle Scholar
  54. 54.
    Maass N., Nagasaki K., Ziebart M., Mundhenke C. and Jonat W. Expression and regulation of tumor suppressor gene maspin in breast cancer. Clin Breast Cancer, 2002; 3: 281–287.PubMedGoogle Scholar
  55. 55.
    Maass N., Hojo T., Ueding M., Luttges J., Kloppel G., Jonat W. and Nagasaki K. Expression of the tumor suppressor gene Maspin in human pancreatic cancers. Clin Cancer Res, 2001; 7: 812–817.PubMedGoogle Scholar
  56. 56.
    Sato N., Fukushima N., Matsubayashi H. and Goggins M. Identification of maspin and S100P as novel hypomethylation targets in pancreatic cancer using global gene expression profiling. Oncogene, 2004; 23: 1531–1538.PubMedGoogle Scholar
  57. 57.
    Fitzgerald M., Oshiro M., Holtan N., Krager K., Cullen J. J., Futscher B. W. and Domann F. E. Human pancreatic carcinoma cells activate maspin expression through loss of epigenetic control. Neoplasia, 2003; 5: 427–436.PubMedGoogle Scholar
  58. 58.
    Ito Y., Yoshida H., Tomoda C., Uruno T., Takamura Y., Miya A., Kobayashi K., Matsuzuka F., Matsuura N., Kuma K. and Miyauchi A. Maspin expression is directly associated with biological aggressiveness of thyroid carcinoma. Thyroid, 2004; 14: 13–18.CrossRefPubMedGoogle Scholar
  59. 59.
    Ogasawara S., Maesawa C., Yamamoto M., Akiyama Y., Wada K., Fujisawa K., Higuchi T., Tomisawa Y., Sato N., Endo S., Saito K. and Masuda T. Disruption of cell-typespecific methylation at the Maspin gene promoter is frequently involved in undifferentiated thyroid cancers. Oncogene, 23: 2004; 1117–1124.CrossRefPubMedGoogle Scholar
  60. 60.
    Sood A. K., Fletcher M. S., Gruman L. M., Coffin J. E., Jabbari S., Khalkhali-Ellis Z., Arbour N., Seftor E. A. and Hendrix M. J. The paradoxical expression of maspin in ovarian carcinoma. Clin Cancer Res, 2002; 8: 2924–2932.PubMedGoogle Scholar
  61. 61.
    Heighway J., Knapp T., Boyce L., Brennand S., Field J. K., Betticher D. C., Ratschiller D., Gugger M., Donovan M., Lasek A. and Rickert P. Expression profiling of primary non-small cell lung cancer for target identification. Oncogene, 2002; 21: 7749–7763.CrossRefPubMedGoogle Scholar
  62. 62.
    Smith S. L., Watson S. G., Ratschiller D., Gugger M., Betticher D. C. and Heighway J. Maspin-the most commonly-expressed gene of the 18q21.3 serpin cluster in lung cancer-is strongly expressed in preneoplastic bronchial lesions. Oncogene, 2003; 22: 8677–8687.CrossRefPubMedGoogle Scholar
  63. 63.
    Yatabe Y., Mitsudomi T. and Takahashi T. Maspin expression in normal lung and nonsmall-cell lung cancers: cellular property-associated expression under the control of promoter DNA methylation. Oncogene, 2004; 23: 4041–4049.PubMedGoogle Scholar
  64. 64.
    Son H. J., Sohn T. S., Song S. Y., Lee J. H. and Rhee J. C. Maspin expression in human gastric adenocarcinoma. Pathol Int, 2002; 52: 508–513.CrossRefPubMedGoogle Scholar
  65. 65.
    Wang M. C., Yang Y. M., Li X. H., Dong F. and Li Y. Maspin expression and its clinicopathological significance in tumorigenesis and progression of gastric cancer. World J Gastroenterol, 2004; 10: 634–637.PubMedGoogle Scholar
  66. 66.
    Zheng H. C., Wang M. C., Li J. Y., Yang X. F., Sun J. M. and Xin Y. Expression of maspin and kai1 and their clinicopathological significance in carcinogenesis and progression of gastric cancer. Chin Med Sci J, 2004; 19: 193–198.PubMedGoogle Scholar
  67. 67.
    Ito R., Nakayama H., Yoshida K., Oda N. and Yasui W. Loss of maspin expression is associated with development and progression of gastric carcinoma with p53 abnormality. Oncol Rep, 2004; 12: 985–990.PubMedGoogle Scholar
  68. 68.
    Akiyama Y., Maesawa C., Ogasawara, S., Terashima M. and Masuda T. Cell-typespecific repression of the maspin gene is disrupted frequently by demethylation at the promoter region in gastric intestinal metaplasia and cancer cells. Am J Pathol, 2003; 163: 1911–1919.PubMedGoogle Scholar
  69. 69.
    Wada K., Maesawa C., Akasaka T. and Masuda T. Aberrant expression of the maspin gene associated with epigenetic modification in melanoma cells. J Invest Dermatol, 2004; 122: 805–811.CrossRefPubMedGoogle Scholar
  70. 70.
    Xia W., Lau Y. K., Hu M. C., Li L., Johnston D. A., Sheng S., El-Naggar A. and Hung M. C. High tumoral maspin expression is associated with improved survival of patients with oral squamous cell carcinoma. Oncogene, 2000; 19: 2398–2403.CrossRefPubMedGoogle Scholar
  71. 71.
    Yasumatsu R., Nakashima T., Hirakawa N., Kumamoto Y., Kuratomi Y., Tomita K. and Komiyama S. Maspin expression in stage I and II oral tongue squamous cell carcinoma. Head Neck, 2001; 23: 962–966.CrossRefPubMedGoogle Scholar
  72. 72.
    Navarro Rde L., Martins M. T. and de Araujo V. C. Maspin expression in normal and neoplastic salivary gland. J Oral Pathol Med, 2004; 33: 435–440.CrossRefPubMedGoogle Scholar
  73. 73.
    Sugimoto S., Maass N., Takimoto Y., Sato K., Minei S., Zhang M., Hoshikawa Y., Junemann K. P., Jonat W. and Nagasaki K. Expression and regulation of tumor suppressor gene maspin in human bladder cancer. Cancer Lett, 2004; 203: 209–215.PubMedGoogle Scholar
  74. 74.
    Friedrich M. G., Toma M. I., Petri S., Cheng J. C., Hammerer P., Erbersdobler A. and Huland H. Expression of Maspin in non-muscle invasive bladder carcinoma: correlation with tumor angiogenesis and prognosis. Eur Urol, 2004; 45: 737–743.CrossRefPubMedGoogle Scholar
  75. 75.
    Wentzensen N., Wilz B., Findeisen P., Wagner R., Dippold W., von Knebel Doeberitz M. and Gebert J. Identification of differentially expressed genes in colorectal adenoma compared to normal tissue by suppression subtractive hybridization. Int J Oncol, 2004; 24: 987–994.PubMedGoogle Scholar
  76. 76.
    Song S. Y., Lee S. K., Kim D. H., Son H. J., Kim H. J., Lim Y. J., Lee W. Y., Chun H. K. and Rhee J. C. Expression of maspin in colon cancers: its relationship with p53 expression and microvessel density. Dig Dis Sci, 2002; 47: 1831–1835.CrossRefPubMedGoogle Scholar
  77. 77.
    Shi H. Y., Liang R., Templeton N. S. and Zhang M. Inhibition of breast tumor progression by systemic delivery of the maspin gene in a syngeneic tumor model. Mol Ther, 2002; 5: 755–761.CrossRefPubMedGoogle Scholar
  78. 78.
    Hurtubise A. and Momparler R. L. Evaluation of antineoplastic action of 5-aza-2′-deoxycytidine (Dacogen) and docetaxel (Taxotere) on human breast, lung and prostate carcinoma cell lines. Anticancer Drugs, 2004; 15: 161–167.CrossRefPubMedGoogle Scholar
  79. 79.
    Lim Y. J., Lee J. K., Jang W. Y., Song S. Y., Lee K. T., Paik S. W. and Rhee J. C. Prognostic significance of maspin in pancreatic ductal adenocarcinoma. Korean J Intern Med, 2004; 19: 15–18.PubMedGoogle Scholar
  80. 80.
    Murakami J., Asaumi J., Maki Y., Tsujigiwa H., Kuroda M., Nagai N., Yanagi Y., Inoue T., Kawasaki S., Tanaka N., Matsubara N. and Kishi K. Effects of demethylating agent 5-aza-2(′)-deoxycytidine and histone deacetylase inhibitor FR901228 on maspin gene expression in oral cancer cell lines. Oral Oncol, 2004; 40: 597–603.CrossRefPubMedGoogle Scholar
  81. 81.
    Primeau M., Gagnon J. and Momparler R. L. Synergistic antineoplastic action of DNA methylation inhibitor 5-AZA-2′-deoxycytidine and histone deacetylase inhibitor depsipeptide on human breast carcinoma cells. Int J Cancer, 2003;103: 177–184.CrossRefPubMedGoogle Scholar
  82. 82.
    Klus G. T., Rokaeus N., Bittner M. L., Chen Y., Korz D. M., Sukumar S., Schick A. and Szallasi Z. Down-regulation of the desmosomal cadherin desmocollin 3 in human breast cancer. Int J Oncol, 2001; 19: 169–174.PubMedGoogle Scholar
  83. 83.
    De Bruin A., Muller E., Wurm S., Caldelari R., Wyder M., Wheelock M. J. and Suter M. M. Loss of invasiveness in squamous cell carcinoma cells overexpressing desmosomal cadherins. Cell Adhes Commun, 1999, 7: 13–28.PubMedGoogle Scholar
  84. 84.
    Chidgey M. A. Desmosomes and disease. Histol Histopathol, 1997; 12: 1159–1168..PubMedGoogle Scholar
  85. 85.
    Tselepis C., Chidgey M., North A. and Garrod D. Desmosomal adhesion inhibits invasive behavior. Proc Natl Acad Sci U S A, 1998; 95: 8064–8069.CrossRefPubMedGoogle Scholar
  86. 86.
    Mechanic S., Raynor K., Hill J. E. and Cowin P. Desmocollins form a distinct subset of the cadherin family of cell adhesion molecules. Proc Natl Acad Sci U S A, 1991; 88: 4476–4480.PubMedGoogle Scholar
  87. 87.
    Zardo G., Tiirikainen M. I., Hong C., Misra A., Feuerstein B. G., Volik S., Collins C. C., Lamborn K. R., Bollen A., Pinkel D., Albertson D. G. and Costello J. F. Integrated genomic and epigenomic analyses pinpoint biallelic gene inactivation in tumors. Nat Genet, 2002; 32: 453–458.CrossRefPubMedGoogle Scholar
  88. 88.
    Costello J. F., Fruhwald M. C., Smiraglia D. J., Rush L. J., Robertson G. P., Gao X., Wright F. A., Feramisco J. D., Peltomaki P., Lang J. C., Schuller D. E. Yu L., Bloomfield C. D., Caligiuri M. A., Yates A., Nishikawa R., Su Huang H., Petrelli N. J., Zhang X., O'Dorisio M. S., Held W. A., Cavenee W. K. and Plass C. Aberrant CpG-island methylation has non-random and tumour-type-specific patterns. Nat Genet, 2000; 24: 132–138.CrossRefPubMedGoogle Scholar
  89. 89.
    Strathdee G., Davies B. R., Vass J. K., Siddiqui N. and Brown R. Cell type-specific methylation of an intronic CpG island controls expression of the MCJ gene. Carcinogenesis, 2004; 25: 693–701.CrossRefPubMedGoogle Scholar
  90. 90.
    Strathdee G., Sim A. and Brown R. Control of gene expression by CpG island methylation in normal cells. Biochem Soc Trans, 2004; 32: 913–915.CrossRefPubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Bernard W. Futscher
    • 1
  • Frederick E. Domann
    • 2
  1. 1.Department of Pharmacology & Toxicology, College of Pharmacy and the Arizona Cancer CenterUniversity of ArizonaTucsonUSA
  2. 2.Free Radical & Radiation Biology Program, Department of Radiation Oncology and the Holden Comprehensive Cancer CenterUniversity of IowaIowa CityUSA

Personalised recommendations