Skip to main content

A Mouse Skin Multistage Carcinogenesis Model That Unmasks Epigenetic Lesions Responsible for Metastasis

  • Chapter
  • 1103 Accesses

Part of the Cancer Metastasis — Biology and Treatment book series (CMBT,volume 7)

Abstract

Although there is a wide range of accepted models of tumorigenesis involving genetic lesions, the timing and hierarchy of epigenetic alterations associated with tumor progression and metastasis are still poorly understood. In this regard, the best characterized mouse carcinogenesis system, the multistage skin cancer progression model, has recently been used to identify epigenetic alterations during tumor progression and to provide decisive information about how epigenetic lesions precede metastasis. This model reveals a progressive global loss of genomic methylcytosine that is associated with the degree of tumor aggressiveness and that occurs in the context of increasing numbers of hypermethylated CpG islands of tumor-suppressor genes during the most malignant stages of carcinogenesis. DNA microarrays coupled with demethylating drug treatments confirm the progressive establishment of hypermethylation events from the early stages to the most aggressive phenotypes. It is of particular interest that the transition from epithelial to spindle cell morphology with metastatic potential is associated with prominent epigenetic alterations: E-cadherin methylation, demethylation of the Snail promoter, and a profound decrease of global DNA methylation.

Key words

  • DNA methylation
  • tumour progression
  • metastasis
  • skin cancer
  • mouse models

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Fearon E. R., Vogelstein B. A genetic model for colorectal tumorigenesis. Cell, 1990; 61:759–767.

    CrossRef  PubMed  Google Scholar 

  2. Quintanilla M., Brown K., Ramsden M., Balmain A. Carcinogen-specific mutation and amplification of Ha-ras during mouse skin carcinogenesis. Nature, 1986; 322:78–80.

    PubMed  Google Scholar 

  3. Bizub D., Wood A. W., Skalka A. M. Mutagenesis of the Ha-ras oncogene in mouse skin tumors induced by polycyclic aromatic hydrocarbons. Proc Natl Acad Sci U S A, 1986; 83:6048–6052.

    PubMed  Google Scholar 

  4. Yuspa S. H. The pathogenesis of squamous cell cancer: lessons learned from studies of skin carcinogenesis—Thirty-Third G. H. A. Clowes Memorial Award Lecture. Cancer Res, 1994; 54:1178–1189.

    PubMed  Google Scholar 

  5. Quintanilla M., Haddow S., Jonas D., Jaffe D., Bowden G. T., Balmain A. Comparison of ras activation during epidermal carcinogenesis in vitro and in vivo. Carcinogenesis, 1991; 12:1875–1881.

    PubMed  Google Scholar 

  6. Balmain A., Harris C. C. Carcinogenesis in mouse and human cells: parallels and paradoxes. Carcinogenesis, 2000; 21:371–377.

    CrossRef  PubMed  Google Scholar 

  7. Hann B., Balmain A. Building ‘validated’ mouse models of human cancer. Curr Opin Cell Biol, 2001; 13:778–784.

    CrossRef  PubMed  Google Scholar 

  8. Balmain A. Cancer as a complex genetic trait: tumor susceptibility in humans and mouse models. Cell, 2002; 108:145–152.

    CrossRef  PubMed  Google Scholar 

  9. Feinberg A. P., Vogelstein B. Hypomethylation distinguishes genes of some human cancers from their normal counterparts. Nature, 1983; 301:89–92.

    CrossRef  PubMed  Google Scholar 

  10. Ehrlich M. “DNA hypomethylation in cancer.” In DNA alterations in cancer: genetic and epigenetic changes, M. Ehrlich ed.: Eaton Publishing, Natick, 2000.

    Google Scholar 

  11. Esteller M., Fraga M. F., Guo M., Garcia-Foncillas J., Hedenfalk I., Godwin A. K., Trojan J., Vaurs-Barriere C., Bignon Y. J., Ramus, S., et al. DNA methylation patterns in hereditary human cancers mimic sporadic tumorigenesis. Hum Mol Genet, 2001; 10:3001–3007.

    CrossRef  PubMed  Google Scholar 

  12. Fraga M. F., Rodríguez R., Canal M. J. Rapid quantification of DNA methylation by high performance capillary electrophoresis. Electrophoresis, 2000; 21:2990–2994.

    CrossRef  PubMed  Google Scholar 

  13. Fraga M. F., Uriel E., Borja Diego L., Berdasco M., Esteller M., Canal, M. J., Rodríguez R. High-performance capillary electrophoretic method for the quantification of 5-methyl 2′-deoxycytidine in genomic DNA: application to plant, animal and human cancer tissues. Electrophoresis, 2002; 23:1677–1681.

    CrossRef  PubMed  Google Scholar 

  14. Paz M. F., Fraga M. F., Avila S., Guo M., Pollan M., Herman J. G., Esteller M. A systematic profile of DNA methylation in human cancer cell lines. Cancer Res, 2003; 63:1114–1121.

    PubMed  Google Scholar 

  15. Habib M., Fares F., Bourgeois C. A., Bella C., Bernardino J., Hernandez-Blazquez F., de Capoa A., Niveleau A. DNA global hypomethylation in EBV-transformed interphase nuclei. Exp Cell Res, 1999; 249:46–53.

    CrossRef  PubMed  Google Scholar 

  16. Gaudet F., Hodgson J. G., Eden A., Jackson-Grusby L., Dausman, J., Gray J. W., Leonhardt H., Jaenisch R. Induction of tumors in mice by genomic hypomethylation. Science, 2003; 300:489–492.

    CrossRef  PubMed  Google Scholar 

  17. Esteller M., Risques R. A., Toyota M., Capella G., Moreno V., Peinado M. A., Baylin S. B., Herman J. G. Promoter hypermethylation of the DNA repair gene O(6)-methylguanine-DNA methyltransferase is associated with the presence of G:C to A:T transition mutations in p53 in human colorectal tumorigenesis. Cancer Res, 2001; 61:4689–4692.

    PubMed  Google Scholar 

  18. Jones P. A., Baylin S. B. The fundamental role of epigenetic events in cancer. Nat Rev Genet, 2002; 3:415–428.

    CrossRef  PubMed  Google Scholar 

  19. Esteller M. CpG island hypermethylation and tumor suppressor genes: a booming present, a brighter future. Oncogene, 2002; 21:5427–5440.

    CrossRef  PubMed  Google Scholar 

  20. Guilford P., Hopkins J., Harraway J., McLeod M., McLeod N., Harawira P., Taite H., Scoular R., Miller A., Reeve A. E. E-cadherin germline mutations in familial gastric cancer. Nature, 1998; 392:402–405.

    CrossRef  PubMed  Google Scholar 

  21. Takeichi M. Morphogenetic roles of classic cadherins. Curr Opin Cell Biol, 1995; 7:619–627.

    CrossRef  PubMed  Google Scholar 

  22. Graff J. R., Herman J. G., Lapidus R. G., Chopra H., Xu R., Jarrard D. F., Isaacs W. B., Pitha P. M., Davidson N. E., Baylin S. B. E-cadherin expression is silenced by DNA hypermethylation in human breast and prostate carcinomas. Cancer Res, 1995; 55:5195–5199.

    PubMed  Google Scholar 

  23. Cano A., Perez-Moreno M. A., Rodrigo I., Locascio A., Blanco M. J., del Barrio M. G., Portillo F., Nieto M. A. The transcription factor snail controls epithelial-mesenchymal transitions by repressing E-cadherin expression. Nat Cell Biol, 2000; 2:76–83.

    CrossRef  PubMed  Google Scholar 

  24. Batlle E., Sancho E., Franci C., Dominguez D., Monfar M., Baulida J., Garcia de Herreros A. The transcription factor snail is a repressor of E-cadherin gene expression in epithelial tumour cells. Nat Cell Biol, 2000; 2:84–89.

    CrossRef  PubMed  Google Scholar 

  25. Fraga M. F., Herranz M., Espada J., Ballestar E., Paz M. F., Ropero S., Erkek E., Bozdogan O., Peinado H., Niveleau A., Mao J. H., Balmain A., Cano A., Esteller M. A mouse skin multistage carcinogenesis model reflects the aberrant DNA methylation patterns of human tumors. Cancer Res, 2004, 64:5527–5534.

    CrossRef  PubMed  Google Scholar 

  26. Perl A. K., Wilgenbus P., Dahl U., Semb H., Christofori G. A causal role for E-cadherin in the transition from adenoma to carcinoma. Nature, 1998; 392:190–193.

    CrossRef  PubMed  Google Scholar 

  27. Yoshiura K., Kanai Y., Ochiai A., Shimoyama Y., Sugimura T., Hirohashi S. Silencing of the E-cadherin invasion-suppressor gene by CpG methylation in human carcinomas. Proc Natl Acad Sci U S A, 1995; 92:7416–7419.

    PubMed  Google Scholar 

  28. Takeichi M. Cadherins in cancer: implications for invasion and metastasis. Curr Opin Cell Biol, 1989; 5:806–811.

    CrossRef  Google Scholar 

  29. Takeichi M. Cadherin cell adhesion receptors as a morphogenetic regulator. Science, 1991; 251:1451–1455.

    PubMed  Google Scholar 

  30. Graff J. R., Gabrielson E., Fujii H., Baylin S. B., Herman J. G. Methylation patterns of the E-cadherin 5′ CpG island are unstable and reflect the dynamic, heterogeneous loss of E-cadherin expression during metastatic progression. J Biol Chem, 2000; 275:2727–2732.

    CrossRef  PubMed  Google Scholar 

  31. Navarro P., Gomez M., Pizarro A., Gamallo C., Quintanilla M., Cano A. A role for the E-cadherin cell-cell adhesion molecule during tumor progression of mouse epidermal carcinogenesis. J Cell Biol, 1991; 115:517–533.

    CrossRef  PubMed  Google Scholar 

  32. Peinado H., Ballestar E., Esteller M., Cano A. The transcription factor Snail mediates E-cadherin repression by the recruitment of the Sin3A/Histone Deacetylase 1/2 complex. Mol. Cell Biol, 2004; 24:306–319.

    CrossRef  PubMed  Google Scholar 

  33. Di Croce L., Raker V. A., Corsaro M., Fazi F., Fanelli M., Faretta M., Fuks F., Lo Coco F., Kouzarides T., Nervi C., et al. Methyltransferase recruitment and DNA hypermethylation of target promoters by an oncogenic transcription factor. Science, 2002; 295:1079–1082.

    CrossRef  PubMed  Google Scholar 

  34. Pegg A. E. Repair of O(6)-alkylguanine by alkyltransferases. Mutat Res, 2000; 462:83–100.

    CrossRef  PubMed  Google Scholar 

  35. Esteller M., Toyota M., Sanchez-Cespedes M., Capella G., Peinado M. A., Watkins D. N., Issa J. P., Sidransky D., Baylin S. B., Herman J. G. Inactivation of the DNA repair gene O6-methylguanine-DNA methyltransferase by promoter hypermethylation is associated with G to A mutations in K-ras in colorectal tumorigenesis. Cancer Res, 2000; 60:2368–2371.

    PubMed  Google Scholar 

  36. Esteller M., Corn P.G., Baylin S.B., Herman J.G. A gene hypermethylation profile of human cancer. Cancer Res, 2001; 61:3225–3229.

    PubMed  Google Scholar 

  37. Danam R. P., Howell S. R., Remack J. S., Brent T. P. Heterogeneous methylation of the O(6)-methylguanine-DNA methyltransferase promoter in immortalized IMR90 cell lines. Int J Oncol, 2001; 18:1187–1193.

    PubMed  Google Scholar 

  38. Ballestar E., Esteller M. The impact of chromatin in human cancer: linking DNA methylation to gene silencing. Carcinogenesis, 2002; 23:1103–1109.

    CrossRef  PubMed  Google Scholar 

  39. Turner B. M. Cellular memory and the histone code. Cell, 2002; 111:285–291.

    CrossRef  PubMed  Google Scholar 

  40. Rhee I., Bachman K. E., Park B. H., Jair K. W., Yen R. W., Schuebel K. E., Cui H., Feinberg A. P., Lengauer C., Kinzler K. W., et al. DNMT1 and DNMT3b cooperate to silence genes in human cancer cells. Nature, 2002; 416:552–556.

    CrossRef  PubMed  Google Scholar 

  41. Fuks F., Burgers W. A., Brehm A., Hughes-Davies L., Kouzarides T. DNA methyltransferase Dnmt1 associates with histone deacetylase activity. Nat Genet, 2000; 24:88–91.

    CrossRef  PubMed  Google Scholar 

  42. Deplus R., Brenner C., Burgers W. A., Putmans P., Kouzarides T., de Launoit Y., Fuks F. Dnmt3L is a transcriptional repressor that recruits histone deacetylase. Nucleic Acids Res, 2002; 30:3831–3838.

    CrossRef  PubMed  Google Scholar 

  43. Weiskirchen R., Gunther, K. The CRP/MLP/TLP family of LIM domain proteins: acting by connecting. Bioessays, 2003; 25:152–162.

    CrossRef  PubMed  Google Scholar 

  44. Baxter R. C. Signalling pathways involved in antiproliferative effects of IGFBP-3: a review. Mol Pathol, 2001; 54:145–148.

    CrossRef  PubMed  Google Scholar 

  45. Furstenberger G., Senn H. J. Insulin-like growth factors and cancer. Lancet Oncol, 2002; 3:298–302.

    CrossRef  PubMed  Google Scholar 

  46. Murakami T., Maki W., Cardones A.R., Fang H., Tun Kyi. A., Nestle F. O., Hwang S.T. Expression of CXC chemokine receptor-4 enhances the pulmonary metastatic potential of murine B16 melanoma cells. Cancer Res, 2002; 62:7328–7334.

    PubMed  Google Scholar 

  47. Keller M., Robitzki A., Layer P. G. Heterologous expression of acetylcholinesterase affects proliferation and glial cytoskeleton of adherent chicken retinal cells. Cell Tissue Res, 2001; 306:187–198.

    PubMed  Google Scholar 

  48. Manevich Y., Sweitzer T., Pak J. H., Feinstein S. I., Muzykantov V., Fisher A. B. 1-Cys peroxiredoxin overexpression protects cells against phospholipid peroxidation-mediated membrane damage. Proc Natl Acad Sci U S A, 2002; 99:11599–11604.

    CrossRef  PubMed  Google Scholar 

  49. Boukamp P., Petrussevska R. T., Breitkreutz D., Hornung J., Markham A., Fusenig N. E. Normal keratinization in a spontaneously immortalized aneuploid human keratinocyte cell line. J Cell Biol, 1998; 106:761–771.

    CrossRef  Google Scholar 

  50. Giard D. J., Aaronson S. A., Todaro G. J., Arnstein P., Kersey J. H., Dosik H., Parks W. P. In vitro cultivation of human tumors: establishment of cell lines derived from a series of solid tumors. J Natl Cancer Inst, 1973; 51:1417–1423.

    PubMed  Google Scholar 

  51. Tomizawa Y., Sekido Y., Kondo M., Gao B., Yokota J., Roche J., Drabkin H., Lerman M. I., Gazdar A. F., Minna J. D. Inhibition of lung cancer cell growth and induction of apoptosis after reexpression of 3p21.3 candidate tumor suppressor gene SEMA3B. Proc Natl Acad Sci U S A, 2001; 98:13954–13959.

    CrossRef  PubMed  Google Scholar 

  52. Yoshikawa H., Matsubara K., Qian G. S., Jackson P., Groopman J. D., Manning J. E., Harris C. C., Herman J. G. SOCS-1, a negative regulator of the JAK/STAT pathway, is silenced by methylation in human hepatocellular carcinoma and shows growth-suppression activity. Nat Genet, 2001; 28:29–35.

    CrossRef  PubMed  Google Scholar 

  53. Yamashita K., Upadhyay S., Osada M., Hoque M. O., Xiao Y., Mori M., Sato F., Meltzer S. J., Sidransky D. Pharmacologic unmasking of epigenetically silenced tumor suppressor genes in esophageal squamous cell carcinoma. Cancer Cell, 2002; 2:485–495.

    CrossRef  PubMed  Google Scholar 

  54. Villar-Garea A., Fraga M. F., Espada J., Esteller M. Procaine is a DNA demethylating agent with growth-inhibitory effects in human cancer cells. Cancer Res, 2003; 63: 4984–4989.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Fraga, M.F., Esteller, M. (2005). A Mouse Skin Multistage Carcinogenesis Model That Unmasks Epigenetic Lesions Responsible for Metastasis. In: Esteller, M. (eds) DNA Methylation, Epigenetics and Metastasis. Cancer Metastasis — Biology and Treatment, vol 7. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3642-6_2

Download citation

Publish with us

Policies and ethics