Skip to main content

Part of the book series: Cellular Origin, Life in Extreme Habitats and Astrobiology ((COLE,volume 9))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aaronson, S. (1980) Descriptive biochemistry and physiology of the Chrysophyceae (with some comparisons to Prymnesiophyceae), In: M. Levandowsky and S.H. Hutner (Eds.), Biochemistry and Physiology of Protozoa, Vol. 3. Academic Press, New York, pp. 117–169.

    Google Scholar 

  • Al Qassab, S., Lee, W.J., Murray, S. and Patterson, D.J. (2002) Flagellates from stromatolites and surrounding sediments in Shark Bay, Western Australia. Acta Protozool. 41, 91–144.

    Google Scholar 

  • Al-Rasheid, K.A.S., Nilsson, J.R. and Larsen, H.F. (2001) Blepharisma intermedium Padmavathi, 1959 (Ciliophora: Heterotrichida) from Al Hasa inland hypersaline oasis in Saudi Arabia. Acta Protozool. 40, 63–69.

    Google Scholar 

  • Anderson, O.R. and Rogerson, A. (1995) Annual abundances and growth potential of gymnamoebae in the Hudson estuary with comparative data from the Firth of Clyde. Eur. J. Protistol. 31, 223–233.

    Google Scholar 

  • Avron, M. and Ben-Amotz, A. (1979) Metabolic adaptation of the alga Dunaliella to low water activity, In: M. Shilo (ed.), Strategies of Microbial Life in Extreme Environments. Verlag Chemie, Weinheim, pp. 83–91.

    Google Scholar 

  • Ayadi, H., Toumi, N., Abid, O., Medhioub, K., Hammami, M., Sime-Ngando, T., Amblard, C. and Sargos, D. (2002) Qualitative and quantitative study of phyto-and zooplankton communities in the saline ponds of Sfax, Tunisia. Revue des Sciences de l’Eau 15, 123–135.

    Google Scholar 

  • Azam, F., Fenchel, T., Field, J.G., Gray, J.S., Meyer-Reil, L.A. and Thingstad, F. (1983) The ecological role of water column microbes in the sea. Mar. Ecol. Progr. Ser. 10, 257–263.

    Google Scholar 

  • Baas-Becking, L.G.M. and Kaplan, I.R. (1956) The microbiological origin of the sulphur nodules of Lake Eyre. Trans. R. Soc. S. Austr. 79, 52–65.

    CAS  Google Scholar 

  • Bick, H. and Kunze, S. (1971) Eine Zusammenstellung von autökologischen und saprobiologisehen Befunden an Süßwasserciliaten. Int. Revue ges. Hydrobiol. 56, 337–384.

    Google Scholar 

  • Borowitzka, M.A., Borowitzka, L.J. and Kessley, D. (1990) Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J. Appl. Phycol. 2, 111–119.

    Article  Google Scholar 

  • Borowitzka, M.A. and Borowitzka, L.J. (1988) Dunaliella, In: M.A. Borowitzka and L.J. Borowitzka (eds.), Micro-Algal Biotechnology. Cambridge University Press, Cambridge, pp. 27–58.

    Google Scholar 

  • Brown, A.D. (1990) Microbial Water Stress Physiology. Principles and Perspectives. John Wiley & Sons, Chichester.

    Google Scholar 

  • Buskey, E.J., Wysor, B. and Hyatt, C. (1998) The role of hypersalinity in the persistence of the Texas brown tide in the Laguna Madre. J. Plankton Res. 20, 1553–1565.

    Google Scholar 

  • Butler, H. and Rogerson, A. (1995) Temporal and spatial abundance of naked amoebae (gymnamoebae) in marine benthic sediments of the Clyde Sea area, Scotland. J. Eukaryot. Microbiol. 42, 724–730.

    Google Scholar 

  • Carpelan, L.H. (1957) Hydrobiology of the Alviso salt ponds. Ecology 38, 375–390.

    Google Scholar 

  • Corliss, J.O. (1998) Classification of protozoa and protists: the current status, In: G.H. Coombs, K. Vickerman, M.A. Sleigh and A. Warren (eds.), Evolutionary Relationships among Protozoa. Chapmann & Hall, London, pp. 409–447.

    Google Scholar 

  • Costello, M.J., Emblow, C. and White, R. (Eds.) (2001) European Register of Marine Species. A Checklist of the Marine Species in Europe and a Bibliography of Guides to their Identification. Publications Scientifiques du Musée National d’Histoire Naturelle, Paris, 40 pp.

    Google Scholar 

  • Cronkite, D.I., Neuman, J., Walker, D. and Pierce, S.K. (1991) The response of contractile and non-contractile vacuoles of Paramecium calkinsi to widely varying salinities. J. Protozool. 38, 565–573.

    PubMed  CAS  Google Scholar 

  • Davis, J.S. (1978) Biological communities of a nutrient enriched salina. Aquat. Bot. 4, 23–42.

    Article  Google Scholar 

  • Debenay, J.P., Geslin, E., Eichler, B.B., Duleba, W., Sylvestre, F. and Eichler, P. (2001) Foraminiferal assemblages in a hypersaline lagoon, Araruama (R.J.) Brazil. J. Foramin. Res. 31, 133–151.

    Google Scholar 

  • Drainville, G. and Cagnon, A. (1973) Osmoregulation in Acanthamoeba castellanii. I. Variations of the concentrations of free intracellular amino acids and of the water content. Comp. Biochem. Physiol. 45A, 379–388.

    Google Scholar 

  • Dryl, S., Demar-Gervais, C. and Kubalski, A. (1982) Role of external cations in excitability of marine ciliate Fabrea salina. Acta Protozool. 21, 55–60.

    CAS  Google Scholar 

  • Elazari-Volcani, B. (1943) A dimastigamoeba in the bed of the Dead Sea. Nature 152, 275–277.

    Google Scholar 

  • Elazari-Volcani, B. (1944) A ciliate from the Dead Sea. Nature 154, 335–336.

    Google Scholar 

  • Esteban, G.F. and Finlay, B.J. (2003) Cryptic freshwater ciliates in a hypersaline lagoon. Protist 154, 411–418.

    Article  PubMed  Google Scholar 

  • Fenchel, T. (1987) Ecology of protozoa. Science Technology Publishers, Madison, WI, 197 pp.

    Google Scholar 

  • Finlay, B.J. (1990) Physiological ecology of free-living protozoa. Adv. Microb. Ecol. 11, 1–34.

    CAS  Google Scholar 

  • Flowers, S. and Evans, F.K. (1966) The flora and fauna of the Great Salt Lake Region, Utah, In: H. Boyko (ed.), Salinity and Aridity. New Approaches to Old Problems. W. Junk, The Hague, pp. 367–393.

    Google Scholar 

  • Franzmann, P.D., Burton, H.R. and McMeekin, T.A. (1987) Halomonas subglaciescola, a new species of halotolerant bacteria isolated from Antarctica. Int. J. Syst. Bacteriol. 37, 27–34.

    Article  Google Scholar 

  • Gilmour, D. (1990) Halotolerant and halophilic microorganisms, In: C. Edwards (ed.), Microbiology of Extreme Environments. Open University Press, Milton Keynes, UK, pp. 147–177.

    Google Scholar 

  • Gaievskaia, N. (1925) Sur deux nouveaux infusores des mares salées-Cladotricha oltzowii nov. gen., nov. sp. Arch. Russ. Protistol. 4, 255–288.

    Google Scholar 

  • Garcia, C.M. and Neill, F.X. (1993) Seasonal change in a saline temporary lake (Fuente de Piedra, southern Spain), In: S.H. Hurlbert (ed.), Saline Lakes V. Kluwer Academic Publishers, Dordrecht, pp. 211–223.

    Google Scholar 

  • Golubic, S. (1980) Halophily and halotolerance in cyanophytes. Origins of Life 10, 169–183.

    Article  CAS  Google Scholar 

  • Goldman, C.R., Mason, D.T. and Hobbie, J.E. (1967) Two Antarctic desert lakes. Limnol. Oceanogr. 12, 295–310.

    Article  Google Scholar 

  • Grant, W.D. (1991) General view of halophiles, In: K. Horikoshi and W.D. Grant (eds.), Superbugs: Microorganisms in Extreme Environments. Japan Scientific Societies Press, Tokyo, pp. 15–37.

    Google Scholar 

  • Guixa-Boixareu, N., Calderon-Paz, J.I., Heldal, M., Bratbak, G. and Pedrós-Alió, C. (1996) Viral lysis and bacterivory as prokaryotic loss factors along a salinity gradient. Aquat. Microb. Ecol. 11, 215–227.

    Google Scholar 

  • Hamburger, C. (1905) Zur Kenntnis der Dunaliella salina und einer Amöbe aus Salinenwasser von Cagliari. Arch. f. Protistenkd. 6, 111–130.

    Google Scholar 

  • Hauer, G., Rogerson, A. and Anderson, O.R. (2001) Platyamoeba pseudovannellida n. sp. A naked amoeba with wide salt tolerance isolated from the Salton Sea, California. J. Eukaryot. Microbiol. 48, 663–669.

    Article  PubMed  CAS  Google Scholar 

  • Hurlbert, A.H., Sturm, K. and Hurlbert. S.H. (2001) Fish and fish eating birds at the Salton Sea: past trends and future prospects. American Society of Limnology (2001) Aquatic Sciences Meeting, Albuquerque, NM, USA Number 0005431.

    Google Scholar 

  • Imhoff, J.F., Sahl, H., Soliman, G. and Trüper, H.G. (1979) The Wadi Natrun; chemical composition and microbial mass developments in alkaline brines and eutrophic desert lakes. Geomicrobiol. J. 1, 219–234.

    Article  CAS  Google Scholar 

  • Jaschof, H. and Schwartz, W. 1961. Untersuchungen über Lebensgemeinschafte halophiler Mikroorganismen II. Über die Mikrobenassoziationen einer alkalischen Sole aus dem Hoctal von Mexiko. Zeitschr. f. Allgem. Mikrobiol. 1, 258–273.

    Google Scholar 

  • Javor, B.J. (1983) Planktonic standing crop and nutrients in a saltern ecosystem. Limnol. Oceanogr. 12, 1–7.

    Google Scholar 

  • Javor, B. (1989) Hypersaline Environments, Microbiology and Biogeochemistry. Springer-Verlag, Berlin, 328 pp.

    Google Scholar 

  • Jellison, R. (1996) Organic matter accumulation in sediments of hypersaline Mono Lake during a period of changing salinity. Limnol. Oceanogr. 41, 1539–1544.

    Article  CAS  Google Scholar 

  • Jones, D.T. (1944) Two protozoans from the Great Salt Lake. Bull. University of Utah 35, 1–11.

    Google Scholar 

  • Kahl, A. (1928) Die Infusorien (Ciliata) der Olestor Salzwasserstellen. Arch. f. Hydrobiol. 19, 189–246.

    Google Scholar 

  • Kahl, A. (1930) Wimpertiere oder Ciliaten (Infusoria), In: F. Dahl, Die Tierwelt Deutschlands, Teil 18, 21, 25, 30. Gustav Fischer Verlag, Jena.

    Google Scholar 

  • Kauss, H. (1977) Biochemistry of osmotic regulation. Int. Rev. Biochem. 13, 120–140.

    Google Scholar 

  • Kirkpatrick, R. (1934) The Life of Great Salt Lake, With Special Reference to the Algae. M.Sc. thesis, University of Utah, Salt Lake City, 30 pp.

    Google Scholar 

  • Kudo, R. (1966) Protozoology. 5th ed. Charles C. Thomas, Springfield, IL., 1174 pp.

    Google Scholar 

  • Kushner, D.J. (1993) Microbial life in extreme environments, In: T.E. Ford (ed.), Aquatic Microbiology: an Ecological Approach. Blackwell Scientific Publications, Cambridge, MA, pp. 383–407.

    Google Scholar 

  • Larsen, H. (1980) Ecology of hypersaline environments, In: A. Nissenbaum (ed.), Hypersaline Brines and Evaporitic Environments. Developments in Sedimentology 28, Elsevier Scientific, Amsterdam, pp. 23–39.

    Google Scholar 

  • Laybourn-Parry, J., Quayle, W. and Henshaw, T. (2002) The biology and evolution of Antarctic saline lakes in relation to salinity and trophy. Polar Biol. 25, 542–552.

    Article  Google Scholar 

  • Laybourn-Parry, J. (2002) Survival mechanisms in Antarctic Lakes. Phil. Trans. R. Soc. London B 357, 863–869.

    CAS  Google Scholar 

  • Mast, S.O. and Hopkins, D.L. (1941) Regulation of the water content of Amoeba mira and adaptation to changes in the osmotic concentrations of the surrounding medium. J. Cell. Comp. Physiol. 41, 31–48.

    Google Scholar 

  • Mianping, Z., Hurlbert, S.H. and Williams, W.D. (1998) Saline lakes VI. Opening Ceremony Sixth International Symposium on Salt Lakes, Beijing, P.R. China, Hydrobiologia 381, ix–x.

    Google Scholar 

  • Mihailowitsch, B. and Wilbert, N. (1990) Bakuella salinarum nov. spec. und Pseudokeronopsis ignea nov. spec. (Ciliata, Hypotrichida) aus einem solebelasteten Fließgewässer des östilchen “Münsterlandes” BRD. Arch. Protistenkd. 138, 207–219.

    Google Scholar 

  • Namyslowski, B. (1913) Über unbekannte halophile Mikroorganismen aus dem Innern des Salzbergwerkes Wieliczka. Bull. Int. Aced. Sci. Krakow, Series B, 3/4, 88–104.

    Google Scholar 

  • Nissenbaum, A. (1975) The microbiology and biogeochemistry of the Dead Sea. Microb. Ecol. 2, 139–161.

    Article  CAS  Google Scholar 

  • Noel, D. (1984) Les diatomées des saumures et des sediments de surface du Salin de Bras del Port. Rev. Invest. Geol. 38/39, 79–107.

    Google Scholar 

  • Oren, A. (1999) Microbiological studies in the Dead Sea: future challenges toward understanding of life at the limit of salt concentrations. Hydrobiologia 405, 1–9.

    Article  CAS  Google Scholar 

  • Oren, A. (2000) Diversity of halophilic microorganisms: Environments, phylogeny, physiology, and applications. J. Indust. Microbiol. Biotechnol. 28, 56–63.

    Google Scholar 

  • Oren, A. (2002) Halophilic Microorganisms and their Environments. Kluwer Academic Publishers, Dordrecht, 575 pp.

    Google Scholar 

  • Pack, D.A. (1919) Two ciliata of Great Salt Lake. Biol. Bull. 36, 273–282.

    Google Scholar 

  • Page, F.C. (1976) An Illustrated Key to Freshwater and Soil Amoebae. Freshwater Biological Association, Ambleside, Cumbria, 155 pp.

    Google Scholar 

  • Page, F.C. (1983) Marine Gymnamoebae. Institute of Terrestrial Ecology, Culture Collection of Algae and Protozoa, Cambridge, England.

    Google Scholar 

  • Page, F.C. (1988) A New Key to Freshwater and Soil Gymnamoebae. Culture Collection of Algae and Protozoa, Freshwater Biological Association, Ambleside, Cumbria, 122 pp.

    Google Scholar 

  • Park, J.S., Kim, H., Choi, D.H. and Cho, B.C. (2003) Active flagellates grazing on prokaryotes in high salinity waters of a solar saltern. Aquat. Microb. Ecol. 33, 173–179.

    Google Scholar 

  • Patterson, D.J. (1980) Contractile vacuoles and associated structures: their organization and function. J. Physiol. 493, 187–198.

    Google Scholar 

  • Patterson, D.J. and Simpson, A.G.B. (1996) Heterotrophic flagellates from coastal marine and hypersaline sediments in Western Australia. Eur. J. Protistol. 32, 423–448.

    Google Scholar 

  • Patterson, D.J., Rogerson, A. and Vørs, N. (2002) Class Heterolobosea, In: J.J. Lee, G.F. Leedale and P. Bradbury (eds.), An Illustrated Guide to the Protozoa, 2nd ed. Society of Protozoologists, Lawrence, Kansas, pp. 1104–1111.

    Google Scholar 

  • Pavlova, P., Kostandinka, M., Tanev, S. and Davis, J.S. (1998) Observations on a solar saltworks near Burgas, Bulgaria. Int. J. Salt Lake Res. 7, 357–368.

    Google Scholar 

  • Pedrós-Alió, C., Calderón-Paz, J.I., MacLean, M.H., Medina, G., Marrase, C., Gasol, J.M. and Guixa-Boixareu, N. (2000) The microbial food web along salinity gradients. FEMS Microbiol. Ecol. 32, 143–155.

    PubMed  Google Scholar 

  • Peréz-Ruzafa, A., Gilabert, J., Gutíerrez, J.M., Fernández, A.I., Marcos, C. and Sabah, S. (2002). Evidence of a planktonic food web response to changes in nutrient input. Hydrobiologia 475/476, 359–369.

    Google Scholar 

  • Por, F.D. (1972) Hydrobiological notes on the high salinity waters of the Sinai Peninsula. Mar. Biol. 14, 111–119.

    Article  Google Scholar 

  • Por, F.D. (1980) A classification of hypersaline waters, based on trophic criteria. Mar. Ecol. 1, 121–131.

    Google Scholar 

  • Post, F.J. (1977) The microbial ecology of the Great Salt Lake. Microb. Ecol. 3, 143–165.

    Article  CAS  Google Scholar 

  • Post, F.J., Borowitzka, L.J., Borowitzka, M.A., Mackay, B. and Moulton, T. (1983) The protozoa of a Western Australian hypersaline lagoon. Hydrobiologia 105, 95–113.

    Article  Google Scholar 

  • Ramos-Cormenzana, A. (1991) Halophilic organisms and their environment, In: F. Rodriguez-Valera (ed.), General and Applied Aspects of Halophilic Microorganisms. Plenum Press, New York, pp. 15–24.

    Google Scholar 

  • Read, L.K., Margulis, L., Stolz, J., Obar, L. and Sawyer, T.K. (1983) A new strain of Paratetramitus jugosus from Laguna Figueroa, Baja California, Mexico. Biol. Bull. 165, 241–264.

    Google Scholar 

  • Reddy, Y.J.R. (1972) A Description of Morphology of a New Species of Euplotes from Great Salt Lake, Utah. MSc. Thesis, University of Utah, Salt Lake City, 31 pp.

    Google Scholar 

  • Roberts, D. (1998) Eukaryotes in extreme environments: Extreme eukaryotes. http://www.nhm.ac.uk/zoology/extreme.html, Department of Zoology, The Natural History Museum, London, SW7, 5BD, U.K.

    Google Scholar 

  • Rodriguez-Valera, F., Ventosa, A., Juez, G. and Imhoff, J.F. (1985) Variation of environmental features and microbial populations with salt concentration in a multipond saltern. Microb. Ecol. 11, 107–115.

    Article  CAS  Google Scholar 

  • Rodriguez-Valera, F., Ruiz-Berraquero, F. and Ramos-Cormenzana, A. (1981) Characteristics of the heterotrophic bacterial populations in hypersaline environments of different salt concentrations. Microb. Ecol. 7, 235–243.

    Article  Google Scholar 

  • Rogerson, A. and Goodkov, A. (2001) Naked amoebae, In: M.J. Costello, C. Emblow and R. White (eds.), European Register of Marine Species. A Checklist of the Marine Species in Europe and a Bibliography of Guides to their Identification. Publications Scientifiques du Musée National d’Histoire Naturelle, Paris.

    Google Scholar 

  • Rogerson, A. and Gwaltney, C. (2000) High numbers of naked amoebae in the planktonic waters of a mangrove stand in Southern Florida, U.S.A. J. Eukaryot. Microbiol. 47, 235–241.

    CAS  Google Scholar 

  • Rogerson, A. and Hauer, G. (2002) Naked amoebae (Protozoa) of the Salton Sea, California. Hydrobiologia 473, 161–177.

    Article  Google Scholar 

  • Rogerson. A. and Laybourn-Parry, J. (1992) The abundance of marine naked amoebae in the water column of the Clyde estuary. Estuarine Coastal Shelf Sci. 34, 187–196.

    Google Scholar 

  • Ruinen, J. (1938) Notizen über Salzflagellaten II. Über die Verbreitung der Salzflagellaten. Arch. f. Protistenkd. 90, 210–258.

    CAS  Google Scholar 

  • Simpson, A.G.B. and Patterson, D.J. (1996) Ultrastructure and identification of the predatory flagellate Colpodella pugnax Cienkowski (Apicomplexa) with a description of Colpodella turpis (n. p.) and a review of the genus. Syst. Parasitol. 33, 181–198.

    Article  Google Scholar 

  • Smirnov, A.V. (2001) Vannella ebro n. sp. (Lobosea, Gymnamoebia) isolated from cyanobacterial mats in Spain. Eur. J. Protistol. 37, 147–153.

    Google Scholar 

  • Smith, D.W. (1978) Water relations of microorganisms in nature, In: D.J. Kushner (ed.), Microbial Life in Extreme Environments. Academic Press, London, pp. 369–377.

    Google Scholar 

  • Stephens, D.W. (1990) Changes in lake levels, salinity and the biological community of Great Salt Lake, Utah, 1847–1987. Hydrobiologia 197, 139–146.

    Article  CAS  Google Scholar 

  • Tong, S.M., Vørs, N. and Patterson, D.J. (1997) Heterotrophic flagellates, centrohelid heliozoan and filose amoebae from marine and freshwater sites in the Antarctic. Polar Biol. 18, 91–106.

    Article  Google Scholar 

  • Ventosa, A. (ed.) (2004) Halophilic Microorganisms. Springer-Verlag, Berlin, 349 pp.

    Google Scholar 

  • Volcani, B. (1944) The microorganisms of the Dead Sea, In: Papers Collected to Commemorate the 70th Anniversary of Dr. Chaim Weizmann. Collective Volume. Daniel Sieff Research Institute, Rehovoth, pp. 71–85.

    Google Scholar 

  • Vorhies, C.T. (1917) Notes of the fauna of the Great Salt Lake. American Naturalist 51, 494–499.

    Article  Google Scholar 

  • Wilbert, N. and Kahan, D. (1981) Ciliates of Solar Lake on the Red Sea shore. Arch. f. Protistenkd. 124, 70–95.

    Google Scholar 

  • Wilbert, N. (1995) Benthic ciliates of salt lakes. Acta Protozool. 34, 271–288.

    Google Scholar 

  • Winkler, D.W. (ed.) (1977) An ecological study of Mono Lake. California Institute for Ecology Publications 12, University of California, Davis, 190 pp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Hauer, G., Rogerson, A. (2005). Heterotrophic Protozoa from Hypersaline Environments. In: Gunde-Cimerman, N., Oren, A., Plemenitaš, A. (eds) Adaptation to Life at High Salt Concentrations in Archaea, Bacteria, and Eukarya. Cellular Origin, Life in Extreme Habitats and Astrobiology, vol 9. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3633-7_33

Download citation

Publish with us

Policies and ethics