Skip to main content

Summary

In the last few years, it has become apparent that reactive oxygen species (ROS) have important roles as signaling intermediaries in a large number of cellular processes, especially in relation to plants’ interactions with their environment. A complex network of low molecular weight antioxidants, ROS scavenging enzymes, and enzymes that maintain antioxidant pools are required to control the levels of ROS in all subcellular compartments. The coordinated regulation of this network by ROS themselves and stress-associated hormones such as salicylic acid, abscisic acid, and jasmonic acid reveals that antioxidant metabolism is central to considerations of how signaling networks are regulated. Furthermore, it is becoming apparent that key antioxidants such as glutathione and ascorbate are involved in the regulation of stress hormone-directed signaling pathways without any interaction with ROS. Therefore ROS and antioxidants may be key points at which the coordination of different signaling pathways is achieved. These issues are considered in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allan AC and Fluhr R (1997) Two distinct sources of elicited reactive oxygen species in tobacco epidermal cells. Plant Cell 9: 1559–1572

    PubMed  CAS  Google Scholar 

  • Alméras E, Stolz S, Vollenweider S, Reymond P, Mène-Saffrané and Farmer EE (2003) Reactive electrophile species activate defense gene expression in Arabidopsis. Plant J 34: 205–216

    Google Scholar 

  • Alvarez ME, Pennell RI, Meijer PJ, Ishikawa A, Dixon RA and Lamb C (1998) Reactive oxygen intermediates mediate a systemic signal network in the establishment of plant immunity. Cell 92: 773–784

    PubMed  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: Scavenging of active oxygen species and dissipation of excess photons. Annu Rev Plant Physiol Mol Biol 50: 601–639

    CAS  Google Scholar 

  • Ball L, Accotto G-P, Bechtold U, Creissen GP, Funck D, Jimenez A, Kular B, Leyland N, Mejia-Carranza J, Reynolds H, Karpinski S and Mullineaux PM (2004) Evidence for a direct link between glutathione biosynthesis and stress defence gene expression in Arabidopsis. Plant Cell 16: 2448–2462.

    PubMed  CAS  Google Scholar 

  • Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J and Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive responses in tomato cells. Plant J 13: 519–527

    PubMed  CAS  Google Scholar 

  • Barrett WC, DeGnore JP, König S, Fales HM, Keng Y-F, Zhang Z-Y, Yim MB and Chock PB (1999) Regulation of PTP1B via glutathionylation of the active site cysteine 215. Biochemistry 38: 6699–6705

    PubMed  CAS  Google Scholar 

  • Bechtold U, Murphy DJ and Mullineaux PM (2004) Arabidopsis peptide methionine sulfoxide reductase2 prevents cellular oxidative damage in long nights. Plant Cell: 16: 908–919

    PubMed  CAS  Google Scholar 

  • Bestwick CS, Brown IR, Bennett MHR and Mansfield JW (1997) Localization of hydrogen peroxide accumulation during the hypersensitive reaction of lettuce cells to Pseudomonas syringae pv phaseolicola. Plant Cell 9: 209–221

    PubMed  CAS  Google Scholar 

  • Bolwell GP, Bindschedler LV, Blee KA, Butt VS, Davies DR, Gardner SL, Gerrish C and Minibayeva F (2002) The apoplastic oxidative burst in response to biotic stress in plants: a threecomponent system. J Exp Bot 53: 1367–1376

    PubMed  CAS  Google Scholar 

  • Borsani O, Valpuesta V and Botella MA (2001) Evidence for a role of salicylic acid in the oxidative damage generated by NaCl and osmotic stress in Arabidopsis seedlings. Plant Physiol 126: 1024–1030

    PubMed  CAS  Google Scholar 

  • Bowler C and Fluhr R (2000) The role of calcium and activated oxygen as signals for controlling cross-tolerance. Trends Plant Sci. 5: 241–246

    PubMed  CAS  Google Scholar 

  • Bowler C, Alliotte T, De Loose M, Van Montagu M and Inz’e D (1989). The induction of manganese superoxide dismutase in response to stress in Nicotiana plumbaginifolia. EMBO J 8: 31–38

    PubMed  CAS  Google Scholar 

  • Bowling SA, Clarke JD, Liu YD, Klessig DF and Dong XN (1997) The cpr5 mutant of Arabidopsis expresses both NPR1- dependent and NPR1-independent resistance. Plant Cell 9: 1573–1584

    PubMed  CAS  Google Scholar 

  • Bradley DJ, Kjellbom P and Lamb CJ (1992) Elicitor-induced and wound-induced oxidative cross-linking of a proline-rich plant-cell wall protein – a novel, rapid defense response. Cell 70: 21–30

    PubMed  CAS  Google Scholar 

  • Brüggemann W, Beyel V, Brodka M, Poth H, Weil M and Stockhaus J (1999) Antioxidants and antioxidative enzymes in wild-type and transgenic Lycopersicon genotypes of different chilling tolerance. J Plant Physiol 140: 145–154

    Google Scholar 

  • Cao H, Bowling SA, Gordon AS and Dong XN (1994) Characterization of an Arabidopsis mutant that is nonresponsive to inducers of systemic acquired-resistance. Plant Cell 6: 1583–1592

    PubMed  CAS  Google Scholar 

  • Chae HS and Lee WS (2001) Ethylene- and enzyme-mediated superoxide production and cell death in carrot cells grown under carbon starvation. Plant Cell Rep 20: 256–261

    CAS  Google Scholar 

  • Chamnongpol S, Willekens H, Langebartels C, Van Montagu M, Inz’e D and Van Camp W (1996) Transgenic tobacco with a reduced catalase activity develops necrotic lesions and induces pathogenesis-related expression under high light. Plant J 10: 491–503

    CAS  Google Scholar 

  • Chaumont M, Morot-Gaudry JF and Foyer CH (1995) Effects of photoinhibitory treatment on CO2 assimilation, D1 protein, ascorbate, glutathione and xanthophyll contents and the electron transport rate in vine leaves. Plant Cell Environ 18: 1358–1366

    CAS  Google Scholar 

  • Chen W and Singh KS (1999) The auxin, hydrogen peroxide and salicylic acid induced expression of the Arabidopsis GST6 promoter is mediated in part by an ocs element. Plant J 19: 667–677

    PubMed  CAS  Google Scholar 

  • Cheong YH, Kim K-N, Pandey GK, Gupta R, Grant JJ and Luan S (2003) CBL1, a calcium sensor that differentially regulates salt, drought and cold responses in Arabidopsis. Plant Cell 15: 1833–1845

    PubMed  CAS  Google Scholar 

  • Conklin PL, Williams EH and Last RL (1996) Environmental stress sensitivity of an ascorbic acid-deficient Arabidopsis mutant. Proc Natl Acad Sci USA 93: 9970–9974

    PubMed  CAS  Google Scholar 

  • Creissen GP, Firmin J, Fryer M, Kular B, Leyland N, Reynolds H, Pastori G, Wellburn F, Baker N, Wellburn A and Mullineaux PM (1999) Elevated glutathione biosynthetic capacity in the chloroplasts of transgenic tobacco plants paradoxically causes increased oxidative stress. Plant Cell 11: 1277–1292

    PubMed  CAS  Google Scholar 

  • Cummins I, Cole DJ and Edwards R (1999) Arole for glutathione transferases functioning as glutathione peroxidases in resistance to multiple herbicides in black-grass. Plant J 18: 285–292

    PubMed  CAS  Google Scholar 

  • Dat J, Foyer CH and Scott IM (1998) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol 118: 1455–1461

    PubMed  CAS  Google Scholar 

  • Dat JF, Pellinen R, Beeckman T, Van De Cotte B, Langebartels C, Kangasjärvi J, Inz’e D and Van Breusegem F (2003) Changes in hydrogen peroxide homeostasis trigger an active cell death process in tobacco. Plant J 33: 621–632

    PubMed  CAS  Google Scholar 

  • De Vos RHC, Vonk MJ, Vooijs R and Schat H (1992) Glutathione depletion due to copper-induced phytochelatin synthesis causes oxidative stress in Silene cucubalus. Plant Physiol 98: 853–858

    PubMed  Google Scholar 

  • Delaunay A, Pflieger D, Barrault M-B, Vinh J and Toledano MB (2002) A thiol peroxidase is an H2O2 receptor and a redox-transducer in gene activation. Cell 111: 471–481

    PubMed  CAS  Google Scholar 

  • Delledonne M, Xia Y, Dixon RA and Lamb C (1998) Nitric oxide functions as a signal in plant disease resistance. Nature 394: 585–588

    PubMed  CAS  Google Scholar 

  • Depr’es C, Chubak C, Rochon A, Clark R, Bethune T, Desveaux D and Fobert PR (2003) The Arabidopsis NPR1 disease resistance protein is a novel cofactor that confers redox regulation of DNA binding activity to the basic domain/leucine zipper transcription factor TGA1. Plant Cell 15: 2181–2191

    Google Scholar 

  • Desikan R, A-H Mackerness S, Hancock JT and Neill SJ (2000) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol 127: 159–172

    Google Scholar 

  • Devadas SK, Enyedi A and Raina R (2002) The Arabidopsis hrl1mutation reveals novel overlapping roles for salicylic acid, jasmonic acid and ethylene signaling in cell death and defense against pathogens. Plant J 30: 467–480

    PubMed  CAS  Google Scholar 

  • Dietrich RA, Delaney TP, Uknes SJ, Ward ER, Ryals JA and Dangl JL (1994) Arabidopsis mutants simulating disease resistance response. Cell 77: 565–577

    PubMed  CAS  Google Scholar 

  • Dietrich RA, Richberg MH, Schmidt R, Dean C and Dangl JL (1997) A novel zinc finger protein is encoded by the Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death. Cell 88: 685–694

    PubMed  CAS  Google Scholar 

  • Doke N (1985) NADPH-dependentO2 generation in membrane fractions isolated from wounded potato tubers inoculated with Phytophthora infestans. Physiol Plant Pathol 27: 311–322

    Google Scholar 

  • Douce R and Neuberger M (1999) Biochemical dissection of photorespiration. Curr Opin Plant Biol 2: 214–222

    PubMed  CAS  Google Scholar 

  • Foreman J, Demidchik V, Bothwell JHF, Mylona P, Miedema H, Torres MA, Linstead P, Costa S, Brownlee C, Jones JDG, Davies JM and Dolan L (2003) Reactive oxygen species produced by NADPH oxidase regulate plant cell growth. Nature 422: 442–445

    PubMed  CAS  Google Scholar 

  • Foyer CH and Halliwell B (1976) Presence of glutathione and glutathione reductase in chloroplasts: A proposed role in ascorbic acid metabolism. Planta 133: 21–25

    Google Scholar 

  • Foyer CH and Mullineaux PM (eds) (1994) Causes of Photooxidative Stress and Amelioration of Defense Systems in Plants. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM and Baker NR (2003) Control of ascorbate peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organisation of Arabidopsis leaves. Plant J 33: 691–705

    PubMed  CAS  Google Scholar 

  • Garret’on V, Carpinelli J, Jordana X and Holuigue L (2002) The as-1 promoter element is an oxidative stress-responsive element and salicylic acid activates it via oxidative species. Plant Physiol 130: 1516–1526

    CAS  Google Scholar 

  • Genoud T and Metraux J-P (1999) Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci 4: 503–507

    PubMed  Google Scholar 

  • Grace SC and Logan BA (2000) Energy dissipation and radical scavenging by the plant phenylpropanoid pathway. Phil Trans Royal Soc Lond Ser B - Biol Sci 355: 1499–1510

    CAS  Google Scholar 

  • Grant JJ and Loake GJ (2000) Role of reactive oxygen intermediates and cognate redox signaling in disease resistance. Plant Physiol 124: 21–29

    PubMed  CAS  Google Scholar 

  • Gray J, Close PS, Briggs SP and Johal GS (1997) A novel suppressor of cell death in plants encoded by the Lls1 gene of maize. Cell 89: 25–31

    PubMed  CAS  Google Scholar 

  • Guan LM, Zhao J and Scandalios JG (2000) Cis-element and trans-factors that regulate expression of the maize Cat1 antioxidant gene in response to ABA and osmotic stress: H2O2 is the likely intermediary signaling molecule for the response. Plant J 22: 87–95

    PubMed  CAS  Google Scholar 

  • Gupta R and Luan S (2003) Redox control of protein tyrosine phosphatases and mitogen-activated protein kinases in plants. Plant Physiol 132: 1149–1152

    PubMed  CAS  Google Scholar 

  • Hernandez JA, Jimenez A, Mullineaux PM and Sevilla F (2000) Tolerance of pea (Pisum sativumL.) to long-term salt stress is associated with induction of antioxidant defenses. Plant Cell Environ 23: 853–862

    CAS  Google Scholar 

  • H’erouart D, Van MontaguMand Inz’e D (1993) Redox activated expression of a cytosolic copper/zinc superoxide dismutase gene in Nicotiana. Proc Natl Acad Sci USA 90: 3018–3112

    Google Scholar 

  • Hiraga S, Sasaki K, Ito H, Ohashi Y and Matsui H (2001) A large family of class III plant peroxidases. Plant Cell Physiol 42: 462–468

    PubMed  CAS  Google Scholar 

  • Hirai MY, Fujiwara T, Awazuhara M, Kimura T, Noji M and Saito K (2003) Global gene expression profiling of sulfurstarved Arabidopsisby DNA macroarray reveals the role of O-acetyl-L-serine as a general regulator of gene expression in response to sulfur nutrition. Plant J 33: 651–663

    PubMed  CAS  Google Scholar 

  • Hodges DM and Forney CF (2000) The effects of ethylene, depressed oxygen and elevated carbon dioxide on antioxidant profiles of senescing spinach leaves. J Exp Bot 51: 645–655

    PubMed  CAS  Google Scholar 

  • Horemans N, Foyer CH and Asard H (2000) Transport and action of ascorbate at the plant plasma membrane. Trends Plant Sci 5: 263–267

    PubMed  CAS  Google Scholar 

  • Horling F, Lamkemeyer P, König J, Finkemeier I, Kandlbinder A, BaierMand Dietz K-J (2003) Divergent light-, ascorbate-, and oxidative stress-dependent regulation of expression of the peroxiredoxin gene family in Arabidopsis. Plant Physiol 131: 317–325

    PubMed  CAS  Google Scholar 

  • Hsieh TH, Lee JT, Charng YY and Chan MT (2002) Tomato plants ectopically expressing Arabidopsis CBF1 show enhanced resistance to water deficit stress. Plant Physiol 130: 618–626

    PubMed  CAS  Google Scholar 

  • Hu X, Bidney DL, Yalpani N, Duvick JP, Crasta O, Folkerts O and Lu G (2003) Overexpression of a gene encoding hydrogen peroxide-generating oxalate oxidase evokes defense responses in sunflower. Plant Physiol 133: 170–181

    PubMed  CAS  Google Scholar 

  • Iturbe-Ormataexe I, Escuredo PR, Arresse-Igor C and Becana M (1998) Oxidative damage in pea plants exposed to water deficit or paraquat. Plant Physiol 116: 173–181

    Google Scholar 

  • Jabs T, Dietrich RA and Dangl JL (1996) Initiation of runaway cell death in an Arabidopsismutant by extracellular superoxide. Science 27: 1853–1856

    Google Scholar 

  • Jamaï A, Tommasini R, Martinoia E and Delrot S (1996) Characterization of glutathione uptake in broad bean leaf protoplasts. Plant Physiol 111: 1145–1152

    PubMed  Google Scholar 

  • Jansen MAK, van den Noort RE, Tan MYA, Prinsen E, Lagrimini LM and Thorneley RNF (2001) Phenol-oxidizing peroxidases contribute to the protection of plants from ultraviolet radiation stress. Plant Physiol 126: 1012–1023

    PubMed  CAS  Google Scholar 

  • Jiang M and Zhang J (2003) Cross-talk between calcium and reactive oxygen species originated from NADPH oxidase in abscisic acid-induced antioxidant defense in leaves of maize seedlings. Plant Cell Environ 26: 929–939

    PubMed  CAS  Google Scholar 

  • Jimenez A, Hernandez JA, del Rio JA and Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114: 275–284

    PubMed  CAS  Google Scholar 

  • Jimenez A, Creissen GP, Kular B, Firmin J, Robinson S, Verhoeyen M and Mullineaux PM (2002): Changes in oxidative processes and components of the antioxidant system during tomato fruit ripening. Planta 214: 751–758

    PubMed  CAS  Google Scholar 

  • Joo HJ, Bae YS and Lee JS (2001) Role of auxin-induced reactive oxygen species in root gravitropism. Plant Physiol 126: 1055–1060

    PubMed  CAS  Google Scholar 

  • Kampfenkel K, Van Montagu M and Inzé D (1995) Effects of iron excess on Nicotiana plumbaginifolia plants. Plant Physiol 107: 725–735

    PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen GP and Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in Arabidopsis during excess light stress. Plant Cell 9: 627–640

    PubMed  CAS  Google Scholar 

  • Karpinski S, Reynolds H, Karpinska B, Wingsle G, Creissen GP and Mullineaux PM (1999) Systemic signaling and acclimation in response to excess excitation energy in Arabidopsis. Science 284: 654–657

    PubMed  CAS  Google Scholar 

  • Karpinski S, Gabrys H, Mateo A, Karpinska B and Mullineaux PM(2003) Light perception in plant disease defense signaling. Curr Opin Plant Biol 6: 390–396

    PubMed  CAS  Google Scholar 

  • Kimura M, Manabe K, Abe T, Yoshida S, Matsui M and Yamamoto YY (2003) Analysis of hydrogen peroxideindependent expression of the high-light-inducible ELIP2 gene with the aid of the ELIP2 promoter-luciferase fusion. Photochem Photobiol 77: 668–674

    PubMed  CAS  Google Scholar 

  • Kleibenstein DJ, Dietrich RA, Martin AC, Last RL and Dangl JL (1999) LSD1 regulates salicylic acid induction of copper zinc superoxide dismutase in Arabidopsis thaliana. Mol Plant-Microbe Interact 12: 1022–1026

    Google Scholar 

  • Koornneef M, Reuling G and Karssen CM (1984) The isolation and characterization of abscisic acid-insensitive mutants of Arabidopsis thaliana. Physiol Plant 61: 377–383

    CAS  Google Scholar 

  • Kovtun Y, Chiu W-L, Tena G and Sheen J (2000) Functional analysis of oxidative stress-activated mitogen-activated protein kinase cascade in plants. Proc Natl Acad Sci USA 97: 2940–2945

    PubMed  CAS  Google Scholar 

  • Kwak JM, Mori IC, Pei ZM, Leonhardt N, Torres MA, Dangl JL, Bloom RE, Bodde S, Jones JD and Schroeder JI (2003) NADPH oxidase AtrbohD and AtrbohF genes function in ROS-dependent ABA signaling in Arabidopsis. EMBO J 22: 2623–2633

    PubMed  CAS  Google Scholar 

  • Langebartels C, Wohlgemuth H, Kschieschan S, Grun S and Sandermann H (2002) Oxidative burst and cell death in ozone-exposed plants. Plant Physiol Biochem 40: 567–575

    Google Scholar 

  • Leung J, Merlot S and Giraudat J (1997) The Arabidopsis ABSCISIC ACID-INSENSITIVE2 (ABI2) and ABI1 genes encode homologous protein phosphatases 2C involved in abscisic acid signal transduction. Plant Cell 9: 759–771

    PubMed  CAS  Google Scholar 

  • Long SP, Humphries S and Falkowski PG (1994) Photoinhibition of photosynthesis in nature. Annu Rev Plant Physiol Plant Mol Biol 45: 633–662

    CAS  Google Scholar 

  • Lorenzo O, Piqueras R, Sànchez-Serrano JJ and Solano R (2003) ETHYLENE RESPONSE FACTOR1 integrates signals from ethylene and jasmonate pathways in plant defense. Plant Cell 15: 165–178

    Google Scholar 

  • Loyall L, Uchida K, Braun S, Furuya M and Frohnmeyer H (2000) Glutathione and a UV light-induced glutathione-Stransferase are involved in signaling to chalcone synthase in cell cultures. Plant Cell 12: 1939–1950

    PubMed  CAS  Google Scholar 

  • Marrs KA (1996) The functions and regulation of glutathione- S-transferases in plants. Annu Rev Plant Physiol Plant Mol Biol 47: 127–148

    PubMed  CAS  Google Scholar 

  • Mattoo AK and Handa AK (2004) Ethylene signaling in plant cell death. In: Nood’en, LD (ed) Plant Cell Death Processes. pp 125–142. Elsevier, Amsterdam

    Google Scholar 

  • Meinhard M, Rodriguez PL and Grill E (2002) The sensitivity of ABI2 to hydrogen peroxide links the abscisic acid-response regulator to redox signaling. Planta 214: 775–782

    PubMed  CAS  Google Scholar 

  • Metwally A, Finkemeier I, Georgi M and Dietz K-J (2003) Salicylic acid alleviates the cadmium toxicity in barley seedlings. Plant Physiol 132: 272–281

    PubMed  CAS  Google Scholar 

  • Meyer Y, Verdoucq L and Vignols F (1999) Plant thioredoxins and glutaredoxins: identity and putative roles. Trends Plant Sci 4: 388–391

    PubMed  Google Scholar 

  • Mittler R, Herr EH, Orvar BL, van Camp W, Willekens H, Inzé D and Ellis BE (1999) Transgenic tobacco plants with reduced capability to detoxify reactive oxygen intermediates are hyperresponsive to pathogen infection. Proc Natl Acad Sci USA 96: 14165–14170

    PubMed  CAS  Google Scholar 

  • Moon H, Lee B, Choi G, Shin D, Prasad DT, Lee O, Kwak S-S, Kim DH, Nam J, Bahk J, Hong, JC, Lee SY, Cho MJ, Lim CO and Yun D-J (2003) NDP kinase 2 interacts with two oxidative stress-activated MAPKs to regulate cellular redox state and enhances multiple stress tolerance in transgenic plants. Proc Natl Acad Sci USA 100: 358–363

    PubMed  CAS  Google Scholar 

  • Mou Z, Fan W and Dong X (2003) Inducers of plant systemic acquired resistance regulate NPR1 function through redox changes. Cell 113: 935–944

    PubMed  CAS  Google Scholar 

  • Mullineaux PM and Creissen GP (1999) Manipulating oxidative stress responses using transgenic plants: successes and dangers. In: Altman A, Ziv M, Izhar S (eds) Plant Biotechnology and In Vitro Biology in the 21st Century, pp 525–532. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  • Mullineaux PM and Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5: 43–48

    PubMed  CAS  Google Scholar 

  • Murata Y and Takahashi M (1999) An alternative electron transfer pathway mediated by chloroplast envelope. Plant Cell Physiol 40: 1007–1013

    CAS  Google Scholar 

  • Murata Y, Pei Z-M, Mori IC and Schroeder J (2001) Abscisic acid activation of plasma membrane Ca2+ channels in guard cells requires cytosolic NAD(P)H and is differentially disrupted upstream and downstream of reactive oxygen species production in abi1-1 and abi2-1 protein phosphatase 2C mutants. Plant Cell 13: 2513–2523

    PubMed  CAS  Google Scholar 

  • Neill SJ, Desikan R, Clarke A and Hancock JT (2002) Nitric oxide is a novel component of abscisic acid signaling in stomatal guard cells. Plant Physiol 128: 13–16

    PubMed  CAS  Google Scholar 

  • Nikiforova V, Freitag J, Kempa S, Adamik M, Hesse H and Hoefgen R (2003) Transcriptome analysis of sulfur depletion in Arabidopsis thaliana: interlacing of biosynthetic pathways provides response specificity. Plant J 33: 633–650

    PubMed  CAS  Google Scholar 

  • Noctor G and Foyer CH (1998) Ascorbate and glutathione: Keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49: 249–279

    PubMed  CAS  Google Scholar 

  • Noctor G, Arisi A-C, Joanin L, Kunert KJ, Rennenberg H and Foyer CH (1998) Glutathione: biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. J Exp Bot 49: 623–647

    CAS  Google Scholar 

  • Noctor G, Gornez L, Vanacker H and Foyer CH (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J Exp Bot 53: 1283–1304

    PubMed  CAS  Google Scholar 

  • Op den Camp RGL, Przbyla D, Ochsenbein C, Laloi C, Kim C, Danon A, Wagner D, Hideg E, Göbel C, Feussner I, Nater M and Apel K. (2003) Rapid induction of distinct stress responses after the release of singlet oxygen in Arabidopsis. Plant Cell 15: 2320–2332

    PubMed  CAS  Google Scholar 

  • Orozco-C’ardenas ML, Narv’aez-V’asquez J and Ryan CA (2001) Hydrogen peroxide acts as a secondary messenger for the induction of defense genes in tomato plants in response to wounding, systemin and methyl jasmonate. Plant Cell 13: 179–191

    CAS  Google Scholar 

  • Ort DR and Baker NR (2002) A photoprotective role for O2 as an alternative electron sink in photosynthesis. Curr Opin Plant Biol 5: 193–198

    PubMed  CAS  Google Scholar 

  • Örvar BL and Ellis BE (1997) Transgenic tobacco plants expressing antisense RNA for cytosolic ascorbate peroxidase show increased susceptibility to ozone injury. Plant J 11: 1297–1305

    Google Scholar 

  • Örvar BL, McPherson J and Ellis BE (1997) Pre-activating wounding response in tobacco prior to high-level ozone exposure prevents necrotic injury. Plant J 11: 203–212

    PubMed  Google Scholar 

  • Overmyer K, Tuominen H, Kettunene R, Betz C, Langebartels C, Sandermann Jr. H and Kangasjärvi J (2000) Ozonesensitive Arabidopsis rcd1mutant reveals opposite roles for ethylene and jasmonate signaling pathways in regulating superoxide-dependent cell death. Plant Cell 12: 1849– 1862

    PubMed  CAS  Google Scholar 

  • Paget MSB and Buttner MJ (2003) Thiol-based regulatory switches. Annu Rev. Genet. 37: 91–121

    PubMed  CAS  Google Scholar 

  • Pastori GM, Kiddle G, Antoniw J, Bernard S, Veljovic-Jovanovic S, Verrier PJ, Noctor G and Foyer CH (2003) Leaf vitamin C contents modulate plant defense transcripts and regulate genes that control development through hormone signaling. Plant Cell 15: 939–951

    PubMed  CAS  Google Scholar 

  • Pei ZM, MurataY, Benning G, Thomine S, Klüsener B, Allen GJ, Grill E and Schroeder JI (2000) Calcium channels activated by hydrogen peroxide mediate abscisic acid signaling in guard cells. Nature 406: 731–734

    Google Scholar 

  • Pellinen R, Palva T and Kangasjärvi J (1999) Subcellular localization of ozone-induced hydrogen peroxide production in birch (Betula pendula) leaf cells. Plant J 20: 349–356

    PubMed  CAS  Google Scholar 

  • Pennell RI and Lamb C (1997) Programmed cell death in plants. Plant Cell 9: 1157–1168

    PubMed  CAS  Google Scholar 

  • Pfeiffer W and Höftberger M (2001) Oxidative burst in Chenopodium rubrumsuspension culture cells: Induction by auxin and osmotic changes. Physiol Plant 111: 144–150

    CAS  Google Scholar 

  • Pneuli L, Liang H, Rozenberg M and Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock proteins in cytosolic ascorbate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34: 187–203

    Google Scholar 

  • Polle A (1997) Defense against photooxidative damage in plants. In: Scandalios, JG (ed) Oxidative Stress and the Molecular Biology of Antioxidant Defenses, pp 623– 666. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Price AH, Taylor A, Ripley SJ, Griffiths A, Trewavas AJ and Knight MR (1994) Oxidative signals in tobacco increase cytosolic calcium. Plant Cell 6: 1301–1310

    PubMed  CAS  Google Scholar 

  • Rao MV and Davies KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17: 603–614

    PubMed  CAS  Google Scholar 

  • Rao MV, Lee H-I, Creelman RA, Mullet JE and Davies KR (2000) Jasmonic acid signaling modulates ozone-induced hypersensitive cell death. Plant Cell 12: 1633–1646

    PubMed  CAS  Google Scholar 

  • Rauser WE. Schupp R and Rennenberg H (1991) Cysteine, γ-glutamylcysteine, and glutathione levels in maize seedlings: Distribution and translocation in normal and cadmium-exposed plants. Plant Physiol 97: 128–138

    PubMed  CAS  Google Scholar 

  • Rhaikel NV and Coruzzi GM (2003) Plant systems biology. Plant Physiol 132: 403

    Google Scholar 

  • Rizhsky L, Hallak-Herr E, Van Breusegem F, Rachmilevitch S, Barr JE, Rodermel S, Inzé D and Mittler R (2002) Double antisense plants lacking ascorbate peroxidase and catalase are less sensitive to oxidative stress than single antisense plants lacking ascorbate peroxidase or catalase. Plant J 32: 329–342

    PubMed  CAS  Google Scholar 

  • Rodermel S (2001) Pathways of plastid-to-nucleus signaling. Trends Plant Sci 6: 471–474

    PubMed  CAS  Google Scholar 

  • Rossel JB, Wilson IM and Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol 130: 1109–1120

    PubMed  CAS  Google Scholar 

  • Rustérucci C, Montillet, J-L, Agnel, J-P, Battesti C, Alonso B, Knoll A, Bessoule J-J, Etienne P, Suty L, Blein J-P and Triantaphyllides C (1999) Involvement of lipoxygenasedependent production of fatty acid hydroperoxides in the development of the hypersensitive cell death by cryptogein on tobacco leaves. J Biol Chem 274: 36446–36455

    PubMed  Google Scholar 

  • Rustérucci C, Aviv DH, Holt BF, Dangl JL and Parker JE (2001) The disease resistance signaling components EDS1 and PAD4 are essential regulators of the cell death pathway controlled by LSD1in Arabidopsis. Plant Cell 13: 2211–2224

    PubMed  Google Scholar 

  • Sakamoto A, Okumura T, Kaminaka H, Sumi K and Tan K (1995) Structure and differential response to abscisic acid of two promoters for the cytosolic copper/zinc-superoxide dismutase genes, SodCc1 and SodcC2, in rice protoplasts. FEBS Lett. 358: 62–66

    PubMed  CAS  Google Scholar 

  • Schaller F (2001) Enzymes of the biosynthesis of octadecanoidderived signaling molecules. J Exp Bot 52: 11–23

    PubMed  CAS  Google Scholar 

  • Schaller GE, Ladd AN, Lanahan MB, Spanbauer JM and Bleecker AB (1995) The ethylene response mediator ETR1 from Arabidopsisforms a disulfide-linked dimer. J Biol Chem 270: 12526–12530

    PubMed  CAS  Google Scholar 

  • Schraudner M, Moeder W, Wiese C, Van Camp W, Inzé D, Langebartels C and Sandermann H Jr. (1998) Ozone-induced oxidative burst in the ozone biomonitor plant, tobacco Bel W3. Plant J 16: 235–245

    CAS  Google Scholar 

  • Scrase-Field SAMG and Knight MR (2003) Calcium: just a chemical switch? Curr Opin Plant Biol 6: 500–506

    PubMed  CAS  Google Scholar 

  • Sebala M, Radova A, Angelini R, Tavladoraki P, Frebort I and Pec P (2001) FAD-containing polyamine oxidases: a timely challenge for researchers in biochemistry and physiology of plants. Plant Sci. 160: 197–207

    Google Scholar 

  • Sherameti I, Sopory SK, Trebicka A, Pfannschmidt T and Oelmüller R (2002) Photosynthetic electron transport determines nitrate reductase gene expression and activity in higher plants. J Biol Chem 277: 46594–46600

    PubMed  CAS  Google Scholar 

  • Steinbrenner J and Linden H (2003) Light induction of carotenoid biosynthesis genes in the green alga Haematococcus pluvialis. Plant Mol Biol 52: 343–356

    PubMed  CAS  Google Scholar 

  • Surpin M, Larkin, RM and Chory J (2002) Signal transduction between the chloroplast and the nucleus. Plant Cell Supplement: S327–S338

    Google Scholar 

  • Surplus SL, Jordan BR, Murphy AM, Carr JP, Thomas B and MacKerness SA-H (1998) Ultraviolet-B-induced responses in Arabidopsis thaliana: role of salicylic acid and reactive oxygen species in the regulation of transcripts encoding photosynthetic and acidic pathogenesis-related proteins. Plant Cell Environ 21: 685–694

    CAS  Google Scholar 

  • Takahashi A, Kawasaki T, Henmi K, Shii K, Kodama O, Satoh H and Shimamoto K (1999) Lesion mimic mutants of rice with alterations in early signaling events of defense. Plant J 17: 535–545

    PubMed  CAS  Google Scholar 

  • Thoma I, Loeffler C, Sinha AK, Gupta M, Krischke M, Steffan B, Roitsch T and Mueller MJ (2003) Cyclopentenone isoprostanes induced by reactive oxygen species trigger defense gene activation and phytoalexin accumulation in plants. Plant J 34: 363–375

    PubMed  CAS  Google Scholar 

  • Thomashow MF (1999) Plant cold acclimation: Freezing tolerance genes and regulatory mechanisms. Ann Rev Plant Physiol Plant Mol Biol 50: 571–599

    CAS  Google Scholar 

  • Vollenweider S, Weber H, Stolz S, Chételat A and Farmer EE (2000) Fatty acid ketodienes and fatty acid ketotrienes: Michael addition acceptors that accumulate in wounded and diseased Arabidopsis leaves. Plant J 24: 467–476

    PubMed  CAS  Google Scholar 

  • Walker MA and McKersie BD (1993) Role of the ascorbateglutathione antioxidant system in chilling resistance in tomato. J Plant Physiol 141: 234–239

    CAS  Google Scholar 

  • Watanabe T, Seo S and Sakai S (2001) Wound-induced expression of a gene for 1-aminocyclopropane-1-carboxylate synthase and ethylene production are regulated by both reactive oxygen species and jasmonic acid in Cucurbita maxima. Plant Physiol Biochem 39: 121–127

    CAS  Google Scholar 

  • Wendehenne D, Pugin A, Klessig DF and Durner J (2001) Nitric oxide: comparative synthesis and signaling in animal and plant cells. Trends Plant Sci 6: 177–180

    PubMed  CAS  Google Scholar 

  • Willekens H, Chamnongpol S, Davey M, Schraudner M, Langebartels C, Van Montagu M, Inzé D and Van Camp W (1997) Catalase is a sink for H2O2 and is indispensable for stress defense in C3 plants. EMBO J 16: 4806–16

    PubMed  CAS  Google Scholar 

  • Wingate VMP, Lawton MA and Lamb CJ (1988) Glutathione causes a massive and selective induction of plant defense genes. Plant Physiol 87: 206–210

    PubMed  CAS  Google Scholar 

  • Wingsle G and Karpinski S (1996) Differential redox regulation of glutathione reductase and Cu/Zn superoxide dismutase genes expression in Pinus sylvestris(L) needles. Planta 198: 151–157

    PubMed  CAS  Google Scholar 

  • Wisniewski J-P, Cornille P, Agnel J-P and Montillet J-L (1999) The extensin multigene family responds differentially to superoxide or hydrogen peroxide in tomato cell cultures. FEBS Lett 447: 264–268

    PubMed  CAS  Google Scholar 

  • Xiang C and Oliver DJ (1998) Glutathione metabolic genes coordinately respond to heavy metals and jasmonic acid in Arabidopsis. Plant Cell 10: 1539–1550

    PubMed  CAS  Google Scholar 

  • Xiang C, Werner BL, Christensen E.M and Oliver DJ (2001) The biological functions of glutathione revisited in Arabidopsis transgenic plants with altered glutathione levels. Plant Physiol 126: 564–574

    PubMed  CAS  Google Scholar 

  • Xu C-C, Li L and Kuang, T. (2000) The inhibited xanthophyll cycle is responsible for the increase in sensitivity to low temperature photoinhibition in rice leaves fed with glutathione. Photosynth Res 65: 107–114

    PubMed  CAS  Google Scholar 

  • Yoda H, Yamaguchi Y and Sano H (2003) Induction of hypersensitive cell death by hydrogen peroxide produced through polyamine degradation in tobacco plants. Plant Physiol 132: 1973–1981

    PubMed  CAS  Google Scholar 

  • Yoshida K, Igarashi E, Mukai M, Hirata K and Miyamoto K (2003) Induction of tolerance to oxidative stress in the green alga, Chlamydamonas reinhardtii, by abscisic acid. Plant Cell Environ 26: 451–457

    CAS  Google Scholar 

  • Yoshioka H, Numata N, Nakajima K, Katou S, Kawakita K, Rowland O, Jones JDG and Doke N (2003) Nicotiana benthamiana gp91phox homologs NbrbohA and NbrbohB participate in H2O2 accumulation and resistance to Phytophthora infestans. Plant Cell 15: 706–718

    Google Scholar 

  • Zhang S and Klessig DF (2001) MAPK cascades in plant defense signaling. Trends Plant Sci 6: 520–527

    PubMed  CAS  Google Scholar 

  • Zhang X, Zhang L, Dong F, Gao J, Galbraith DW and Song CP (2001) Hydrogen peroxide is involved in abscisic acidinduced stomatal closure in Vicia faba. Plant Physiol 126: 1438–1448

    PubMed  CAS  Google Scholar 

  • Zhu YL, Pilon-Smits EAH, Tarun AS, Weber SU, Jouanin L and Terry N (1999) Cadmium tolerance and accumulation in Indian mustard is enhanced by overexpressing γ-glutamylcsteine synthetase. Plant Physiol 121: 1169–1177

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Mullineaux, P.M., Karpinski, S., Creissen, G.P. (2008). Integration of Signaling in Antioxidant Defenses. In: Demmig-Adams, B., Adams, W.W., Mattoo, A.K. (eds) Photoprotection, Photoinhibition, Gene Regulation, and Environment. Advances in Photosynthesis and Respiration, vol 21. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3579-9_15

Download citation

Publish with us

Policies and ethics