Skip to main content

Transport and Mixing in the Atmosphere

  • Conference paper
Mechanics of the 21st Century

Abstract

Transport and mixing processes in the atmosphere operate on scales from millimeters to thousands of kilometers. In certain parts of the atmosphere the large-scale quasi-horizontal flow appears to play the dominant role in transport and in the stirring process that leads ultimately to true (molecular) mixing at very small scales. Previous work in other fluid dynamical contexts such as ‘chaotic advection’ or ‘Batchelorregime turbulence’ is therefore potentially relevant. This article reviews how, with appropriate modification, fluid dynamical insights and methods can be used, in conjunction with observational data on large-scale velocity fields or on chemical species, to quantify different aspects of transport and mixing in the atmosphere.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • H. Akimoto, Global air quality and pollution, Science, 302, pp.1716–1719, 2003.

    Article  Google Scholar 

  • J.-R. Alisse, P.H. Haynes, J. Vanneste, C. Sidi, Quantification of stratospheric mixing from turbulence microstructure measurements, Geophys. Res. Lett., 27, pp.2621–2624, 2000.

    Article  Google Scholar 

  • T.M. Antonsen, Z. Fan, E. Ott, E. Garcia-Lopez, The role of chaotic orbits in the determination of power spectra of passive scalars, Phys. Fluids, 8, pp.3094–3104, 1996.

    Article  MATH  Google Scholar 

  • P. Bartello, Using low-resolution winds to deduce fine structure in tracers, Atmos.-Ocean, 38, pp.303–320, 2000.

    Google Scholar 

  • M.G. Brown, R.M. Samelson, Particle motion in incompressible, inviscid vorticity-conserving fluids, Phys. Fluids, 6, pp.2875–2876, 1994.

    Article  MATH  Google Scholar 

  • C. Coulliette, S. Wiggins, Intergyre transport in a wind-driven, quasigeostrophic double gyre: An application of lobe dynamics, Nonlinear Proc. Geophys., 7, pp.59–85, 2001.

    Article  Google Scholar 

  • G. Falkovich, K. Gawedzki, M. Vergassola, Particles and fields in fluid turbulence, Revs. Mod. Phys. 73, pp.913–975, 2001.

    Article  MathSciNet  Google Scholar 

  • D.R. Fereday, P.H. Haynes, Scalar decay in two-dimensional chaotic advection and Batchelor-regime turbulence, Phys. Fluids, 16, pp.4359–4370, 2004.

    Article  MathSciNet  Google Scholar 

  • P.H. Haynes, E.F. Shuckburgh, Effective diffusivity as a diagnostic of atmospheric transport. Part I: stratosphere, J. Geophys. Res. 105, pp.22777–22794, 2000a.

    Article  Google Scholar 

  • P.H. Haynes, E.F. Shuckburgh, Effective diffusivity as a diagnostic of atmospheric transport. Part II: troposphere and lower stratosphere, J. Geophys. Res., 105, pp.22795–22810, 2000.

    Article  Google Scholar 

  • P.H. Haynes, J. Vanneste, Stratospheric tracer spectra, J. Atmos. Sci., 61, pp.161–178, 2004.

    Article  Google Scholar 

  • B. Joseph, B. Legras, Relation between kinematic boundaries, stirring and barriers for the Antarctic polar vortex, J. Atmos. Sci. 59, pp.1198–1212, 2002.

    Article  Google Scholar 

  • T.-Y. Koh, R.A. Plumb, Lobe dynamics applied to barotropic Rossby-wave breaking, Phys. Fluids 12, pp.1518–1528, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  • B. Legras, B. Joseph, F. Lefévre, Vertical diffusivity in the lower stratosphere from Lagrangian back-trajectory reconstructions of ozone profiles, J. Geophys. Res., 108:D4562 — doi:10.1029/2002JD003045, 2003.

    Article  Google Scholar 

  • N. Malhotra, S. Wiggins, Geometric structures, lobe dynamics, and Lagrangian transport in flows with aperiodic time-dependence, with applications to Rossby wave flow, J. Nonlinear Sci., 8:401–456, 1998.

    Article  MathSciNet  MATH  Google Scholar 

  • J.D. Meiss, Symplectic maps, variational principles and transport, Rev. Mod. Phys., 64, 795–848, 1992.

    Article  MathSciNet  MATH  Google Scholar 

  • J. Methven, S.R. Arnold, F.M. O’Connor, H. Barjat, K. Dewey, J. Kent, N. Brough, Estimating photochemically produced ozone throughout a domain using flight data and a Lagrangian model, J. Geophys. Res., 108:D4271—doi:10.1029/2002JD00 2955, 2003.

    Article  Google Scholar 

  • R.E. Newell, V. Thouret, J.Y.N. Cho, P. Stoller, A. Marenco, H.G. Smit, Ubiquity of quasi-horizontal layers in the troposphere, Nature, 398, pp.316–319, 1999.

    Article  Google Scholar 

  • R.T. Pierrehumbert, Chaotic mixing of tracer and vorticity by modulated traveling Rossby waves, Geophys. Astrophys. Fluid Dynamics, 58, pp.285–319, 1991.

    Google Scholar 

  • D.A. Poet, Dynamical consistency, barriers to transport and mixing, in chaotic advection flows, Ph.D. thesis, University of Cambridge, pp.207, 2004.

    Google Scholar 

  • T.G. Shepherd, J.N. Koshyk, K. Ngan, On the nature of large-scale mixing in the stratosphere and mesosphere, J. Geophys. Res., 105:, pp.12433–12446, 2004.

    Article  Google Scholar 

  • E.F. Shuckburgh, P.H. Haynes, Diagnosing transport and mixing using a tracer-based coordinate system, Phys. Fluids, 15, pp.3342–3357, 2003.

    Article  Google Scholar 

  • L.C. Sparling, J.T. Bacmeister, Scale dependence of tracer microstructure: PDFs, intermittency and the dissipation scale, Geophys. Res. Lett., 28: pp.2823–2826, 2001.

    Article  Google Scholar 

  • J. Sukhatme, R.T. Pierrehumbert, Decay of passive scalars under the action of single scale smooth velocity fields in bounded two-dimensional domains: From non-self-similar probability distribution functions to self-similar eigenmodes, Phys. Rev. E., 66:056302-1–056302-11, 2002.

    Article  MathSciNet  Google Scholar 

  • D.W. Waugh, et al. Transport of material out of the stratospheric Arctic vortex by Rossby wave breaking, J. Geophys. Res., 99, pp.1071–1088, 1994.

    Article  Google Scholar 

  • S. Wiggins, Chaotic transport in dynamical systems, New York, Spring-Verlag, pp.301, 1992.

    MATH  Google Scholar 

  • S. Wiggins, J.M. Ottino, Foundations of chaotic mixing, Phil. Trans. Roy. Soc. Lond. A, 362, pp.937–970, 2004.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Haynes, P.H. (2005). Transport and Mixing in the Atmosphere. In: Gutkowski, W., Kowalewski, T.A. (eds) Mechanics of the 21st Century. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3559-4_8

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3559-4_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3456-5

  • Online ISBN: 978-1-4020-3559-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics