Skip to main content

Flaw Tolerant Nanostructures of Biological Materials

  • Conference paper
Mechanics of the 21st Century

Abstract

Bone-like biological materials have achieved superior mechanical properties through hierarchical composite structures of mineral and protein. Gecko and many insects have evolved hierarchical surface structures to achieve superior adhesion capabilities. We show that the nanometer scale plays a key role in allowing these biological systems to achieve such properties, and suggest that the principle of flaw tolerance may have had an overarching influence on the evolution of the bulk nanostructure of bone-like materials and the surface nanostructure of gecko-like animal species. We demonstrate that the nanoscale sizes allow the mineral nanoparticles in bone to achieve optimum fracture strength and the spatula nanoprotrusions in Gecko to achieve optimum adhesion strength. Strength optimization is achieved by restricting the relevant dimension to nanometer scale so that crack-like flaws do not propagate to break the desired structural link. Continuum and atomistic modeling have been conducted to verify this concept.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W.J. Landis, The strength of a calcified tissue depends in part on the molecular structure and organization of its constituent mineral crystals in their organic matrix, Bone, Vol. 16, No.5, pp.533–544, 1995.

    Article  Google Scholar 

  2. P. Roschger, B.M. Grabner, S. Rinnerthaler, W. Tesch, M. Kneissel, A. Berzlanovich, K. Klaushofer, and P. Fratzl, Structural development of the mineralized tissue in the human L4 vertebral body, J. Struct. Biol., Vol. 136, pp.126–136, 2001.

    Article  Google Scholar 

  3. S. Kamat, X. Su, R. Ballarini, and A.H. Heuer, Structural basis for the fracture toughness of the shell of the conch strombus gigas, Nature, Vol. 405, pp.1036–1040, 2000.

    Article  Google Scholar 

  4. H. Gao, B. Ji, I.L. Jaeger, E. Arzt, and P. Fratzl, Materials become insensitive to flaws at nanoscale: lessons from nature, Proc. Natl. Acad. Sci. USA, Vol. 100, pp.5597–5600, 2003.

    Article  Google Scholar 

  5. A.A. Griffith, The phenomena of rupture and flow in solids, Phil. Trans. R. Soc. London A, Vol. 221, pp.163–198, 1921.

    Google Scholar 

  6. H. Gao, B. Ji, M.J. Buehler, and H. Yao, Flaw tolerant bulk and surface nanostructures of biological systems. Mechanics and Chemistry of Biosystems, Vol. 1, pp.37–52, 2004.

    Google Scholar 

  7. H. Gao and B. Ji, Modeling Fracture in Nano-Materials via a Virtual Internal Bond Method, Engineering Fracture Mechanics, Vol. 70, pp.1777–1791, 2003.

    Article  Google Scholar 

  8. B. Ji and H. Gao, A study of fracture mechanisms in biological nano-composites via the virtual internal bond model, Materials Science & Engineering A, Vol. 366, pp.96–103, 2004.

    Article  Google Scholar 

  9. B. Ji and H. Gao, Mechanical properties of nanostructure of biological materials, Journal of the Mechanics and Physics of Solids, Vol. 52(9), pp.1963–1990, 2004.

    Article  MATH  Google Scholar 

  10. M. Scherge and S.N. Gorb, Biological Micro and Nano-Tribology, Springer-Verlag, New York, 2001.

    Google Scholar 

  11. H. Gao, X. Wang, H. Yao, S. Gorb, and E. Arzt, Mechanics of Hierarchical adhesion structure of gecko, Mechanics of Materials, Vol. 37, pp.275–285, 2005.

    Article  Google Scholar 

  12. H. Tada, P.C. Paris, and G.R. Irwin, The stress analysis of cracks handbook. ASME Press, New York, 2000.

    Google Scholar 

  13. V. Tvergaard and J.W. Hutchinson, Effect of strain dependent cohesive zone model on predictions of crack growth resistance, Int. J. Solids Struct. Vol. 33, pp.3297–3308, 1996.

    Article  MATH  Google Scholar 

  14. H. Gao and H. Yao, Shape insensitive optimal adhesion of nanoscale fibrillar structures, Proceedings of the National Academy of Sciences of USA, Vol. 101, pp.7851–7856, 2004.

    Article  Google Scholar 

  15. K.L. Johnson, K. Kendall, and A.D. Roberts, Surface energy and the contact of elastic solids, Proc. R. Soc. London A, Vol. 324, pp.301–313, 1971.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Gao, H., Ji, B., Buehler, M.J., Yao, H. (2005). Flaw Tolerant Nanostructures of Biological Materials. In: Gutkowski, W., Kowalewski, T.A. (eds) Mechanics of the 21st Century. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3559-4_7

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3559-4_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3456-5

  • Online ISBN: 978-1-4020-3559-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics