Skip to main content

Multibody Dynamics: Bridging for Multidisciplinary Applications

  • Conference paper
Mechanics of the 21st Century

Abstract

Simple or complex systems characterized by large relative motions between their components find in the multibody dynamics formalisms the most general and efficient computational tools for their analysis. Initially restricted to the treatment of rigid bodies, the multibody methods are now widely used to describe the system components deformations, regardless of their linear or nonlinear nature. The ease of including in the multibody models different descriptions of the contact problems, control paradigms or equations of equilibrium of other disciplines is demonstrated here to show the suitability of these approaches to be used in multidisciplinary applications

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. P. Nikravesh, Computer-Aided Analysis of Mechanical Systems, Prentice-Hall, Englewood Cliffs, New Jersey 1988.

    Google Scholar 

  2. J. Garcia de Jalon, E. Bayo, Kinematic and Dynamic Simulation of Mechanical Systems — The Real-Time Challenge, Springer-Verlag, Berlin 1994.

    Google Scholar 

  3. P. Nikravesh and G. Gim, Systematic construction of the equations of motion for multibody systems containing closed kinematic loops, Journal of Mechanical Design, Vol. 115, No.1, pp.143–149, 1993.

    Article  Google Scholar 

  4. C.W. Gear, Numerical solution of differential-algebraic equations, IEEE Transactions on Circuit Theory, Vol. CT-18, pp.89–95, 1981.

    Google Scholar 

  5. J. Gonçalves and J. Ambrósio, Complex flexible multibody systems with application to vehicle dynamics, Multibody System Dynamics, Vol. 6, No.2, pp.163–182, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  6. J. Ambrósio and P. Nikravesh, Elastic-plastic deformation in multibody dynamics, Nonlinear Dynamics, Vol. 3, pp.85–104, 1992.

    Article  Google Scholar 

  7. F. Pfeiffer and C. Glocker, Multibody Dynamics with Unilateral Contacts, John Wiley and Sons, New York 1996.

    MATH  Google Scholar 

  8. H. Lankarani and P. Nikravesh, Continuous contact force models for impact analysis in multibody systems, Nonlinear Dynamics, Vol. 5, pp.193–207, 1994.

    Google Scholar 

  9. M. Valasek, Z. Šika, Evaluation of dynamic capabilities of machines and robots, Multibody System Dynamics, Vol. 5, pp.183–202, 2001.

    Article  Google Scholar 

  10. H. Møller and E. Lund, Shape Sensitivity Analysis of Strongly Coupled Fluid-Structure Interaction Problems, [in:] Proc. 8th AIAA/USAF/NASA/ISSMO Symposium on Multidisciplinary Analysis and Optimization, Long Beach, CA. AIAA Paper No.2000-4823, 2000.

    Google Scholar 

  11. H. Møller, E. Lund, J. Ambrósio and J. Gonçalves, Simulation of fluid loaded flexible multiple bodies, Multibody Systems Dynamics, Vol. 13, No.1, 2005.

    Google Scholar 

  12. J. Pombo and J. Ambrósio, General spatial curve joint for rail guided vehicles: kinematics and dynamics, Multibody Systems Dynamics, Vol. 9, pp.237–264, 2003.

    Article  MATH  Google Scholar 

  13. J. Pombo and J. Ambrósio, A multibody methodology for railway dynamics applications, Technical Report IDMEC/CPM-04/002, IDMEC, Instituto Superior Técnico, Lisboa, Portugal, 2004.

    Google Scholar 

  14. M. Silva and J. Ambrósio, Kinematic data consistency in the inverse dynamic analysis of biomechanical systems, Multibody System Dynamics, Vol. 8, pp.219–239, 2002.

    Article  MATH  Google Scholar 

  15. D. Tsirakos, V. Baltzopoulos and R. Bartlett, Inverse Optimization: Functional and Physiological Considerations Related to the Force-Sharing Problem, Critical Reviews in Biomedical Engineering, Vol. 25, Nos.4&5, pp.371–407, 1997.

    Google Scholar 

  16. M. Silva and J. Ambrósio, Human Motion Analysis Using Multibody Dynamics and Optimization Tools, Technical Report IDMEC/CPM-04/001, IDMEC, Instituto Superior Técnico, Lisboa, Portugal, 2004.

    Google Scholar 

  17. G.T.Yamaguchi, Dynamic Modeling of Musculoskeletal Motion, Kluwer Academic Publishers, Boston 2001.

    MATH  Google Scholar 

  18. H. Hertz Gesammelte Werke, Leipzig, Germany 1895.

    Google Scholar 

  19. N.W. Murray, The static approach to plastic collapse and energy dissipation in some thin-walled steel structures, [in:] Structural Crashworthiness, N. Jones and T. Wierzbicki [eds.], pp.44–65, Butterworths, London 1983.

    Google Scholar 

  20. C.M. Kindervater, Aircraft and helicopter crashworthiness: design and simulation, [in:] Crashworthiness Of Transportation Systems: Structural Impact And Occupant Protection, J.A.C. Ambrósio, M.S. Pereira and F.P Silva [eds.], NATO ASI Series E. Vol. 332, pp.525–577, Kluwer Academic Publishers, Dordrecht 1997.

    Google Scholar 

  21. P.E. Nikravesh, I.S. Chung, and R.L. Benedict, Plastic hinge approach to vehicle simulation using a plastic hinge technique, J. Comp. Struct. Vol. 16, pp.385–400, 1983.

    Article  Google Scholar 

  22. 30 mph Rollover Test of an AM General Model M151-A2 1/4 Ton Jeep, The Transportation Research Center of Ohio, Test Report, 1985.

    Google Scholar 

  23. K.-J. Bathe and S. Bolourchi, Large displacement analysis of three-dimensional beam structures, Int. J. Num. Methods in Engng., Vol. 14, pp.961–986, 1979.

    Article  MATH  Google Scholar 

  24. M. Anantharaman and M. Hiller, Numerical simulation of mechanical systems using methods for differential-algebraic equations, Int. J. Num. Meth. Eng., Vol. 32, pp.1531–1542, 1991.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Ambrósio, J.A. (2005). Multibody Dynamics: Bridging for Multidisciplinary Applications. In: Gutkowski, W., Kowalewski, T.A. (eds) Mechanics of the 21st Century. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3559-4_3

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3559-4_3

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3456-5

  • Online ISBN: 978-1-4020-3559-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics