Skip to main content

Monitoring Networks for Testing Model-Based Scenarios of Climate Change Impact on Mountain Plant Distribution

  • Chapter
Global Change and Mountain Regions

Part of the book series: Advances in Global Change Research ((AGLO,volume 23))

Abstract

In recent years, predictive modelling of plant species’ distribution has been shown to be a powerful method for obtaining preliminary assessments of potential ecological impact of rapid climatic change (e.g. Brzeziecki et al. 1995; Kienast et al. 1996; Saetersdal and Birks 1997; Iverson and Prasad 1998; Lischke et al. 1998; Gottfried et al. 1999; Guisan and Theurillat 2000; 2001; Bakkenes et al. 2002). Such models give static results: they reveal where suitable species’ habitats might be located in a climatically changed future, but they do not explicitly consider all the processes leading to the predicted changes. A basic assumption behind their application is thus to consider present and future distributions of species to be in equilibrium, or at least in pseudo-equilibrium, with their environment (Guisan and Theurillat 2000). Although this assumption obviously does not hold in all ecological situations, scenarios obtained from these models nevertheless constitute an interesting spatially-explicit and quantitative basis for discussing how climate change might impact plant distribution. Examples of such discussions are provided in the next section.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Austin, M. P. (2002). Spatial prediction of species distribution: An interface between ecological theory and statistical modelling. Ecological Modelling 157, 101–118.

    Article  Google Scholar 

  • Bakkenes, M., Alkemade, J. R. M., Ihle, F., Leemans, R., and Latour, J. B. (2002). Assessing the effects of forecasted climate change on the diversity and distribution of European higher plants for 2050. Global Change Biology 8, 390–407.

    Article  Google Scholar 

  • Binz, H. R., and Wildi, O. (1988). “Das Simulationsmodell MaB-Davos.” Schlussbericht Schweiz. MaB-Programm Nr. 33, Bundesamt für Umweltschutz, Bern.

    Google Scholar 

  • Brzeziecki, B., Kienast, F., and Wildi, O. (1995). Modeling potential impacts of climate change on the spatial distribution of zonal forest communities in Switzerland. Journal of Vegetation Science 6, 257–258.

    Article  Google Scholar 

  • Carnelli, A. L. (2002). “Evolution of the vegetation at the subalpine-alpine ecocline during the Holocene: Comparative study in the Aletsch region, Val d’Arpette and Furkapass (Valais, Switzerland).” Unpublished PhD Thesis, University of Geneva.

    Google Scholar 

  • Chuine, I., Cambon G., and Comtois, P. (2000). Scaling phenology from the local to the regional level: Advances from species-specific phenological models. Global Change Biology? 6, 943–952.

    Article  Google Scholar 

  • Chuine, I., and Beaubien, E. G. (2001). Phenology is a major determinant of tree species range. Ecology Letters 4, 500–510.

    Article  Google Scholar 

  • Fischer, H. S. (1990). Simulating the distribution of plant communities in an alpine landscape. Coenoses 5, 37–43.

    Google Scholar 

  • Fitter, A. H., and Fitter, R. S. R. (2002). Rapid change in flowering time in British plants. Science 296, 1689–1691.

    Article  CAS  Google Scholar 

  • Gottfried, M., Pauli, H., Reitter, K., and Grabherr, G. (1999). A fine-scaled predictive model for changes in species distribution patterns of high mountain plants induced by climate wanning. Diversity and Distributions 5, 241–251.

    Article  Google Scholar 

  • Grabherr, G., Gottfried, M., and Pauli, H. (1994). Climate effects on mountain plants. Nature 369, 448.

    Article  CAS  Google Scholar 

  • Grime, J. P. (1977). Evidence for the existence of three life history strategies in plants and its relevance to ecological and evolutionary theory. American Naturalist 111, 1169–1194.

    Article  Google Scholar 

  • Guisan, A., Theurillat, J.-R., and Kienast, F. (1998). Predicting the potential distribution of plant species in an alpine environment. Journal of Vegetation Science 9, 65–74.

    Article  Google Scholar 

  • Guisan, A., and Theurillat, J.-P. (2000). Equilibrium modelling of alpine plant distribution and climate change: How far can we go? Phytocoenologia 30, 353–384.

    Article  Google Scholar 

  • Guisan, A., and Zimmermann, N. E. (2000). Predictive habitat distribution models in ecology. Ecological Modelling 135, 147–186.

    Article  Google Scholar 

  • Guisan, A., and Theurillat, J.-P. (2001). Assessing alpine plant vulnerability to climate change: A modeling perspective. Integrated Assessment 1, 307–320.

    Article  Google Scholar 

  • Guisan, A., Edwards, T. C., and Hastie, T. (2002). Generalized linear and generalized additive models in studies of species distribution: Setting the scene. Ecological Modelling 157, 89–100.

    Article  Google Scholar 

  • Hughes, L. (2000). Biological consequences of global warming: Is the signal already apparent? TREE 15, 56–61.

    Google Scholar 

  • Huntley, B. (1991). How plant respond to climate change: Migration rates, individualism and the consequences for plant communities. Annals of Botany 67, 15–22.

    Google Scholar 

  • Huntley, B., Berry, P. M., Cramer, W., and McDonald, A. P. (1995). Modelling present and potential future ranges of some European higher plants using climate response surfaces. Journal of Biogeography 22, 967–1001.

    Article  Google Scholar 

  • Iverson, L. R., and Prasad, A. M. (1998). Predicting abundance of 80 tree species following climate change in the eastern United States. Ecological Monographs 68, 465–485.

    Article  Google Scholar 

  • Keller, F. (1992). Automated mapping of mountain permafrost using the program PERMAKART within the geographical information system ARC/INFO. Permafrost and Periglacial Processes 3, 133–138.

    Article  Google Scholar 

  • Kienast, F., Wildi, O., and Brzeziecki, B. (1996). Potential impacts of climate change on species richness in mountain forests — An ecological risk assessment. Biological Conservation 83, 291–305.

    Article  Google Scholar 

  • Körner, C. (2001). Why are there global gradient in species richness? Mountains might hold the answer. TREE 15, 513–514.

    Google Scholar 

  • Lischke, H., Guisan, A., Fischlin, A., and Bugmann, H. (1998). Vegetation response to climate change in the Alps: Modeling studies. In “Views from the Alps: Regional perspectives on climate change.” (P. Cebon, U. Dahinden, H. C. Davies, D. Imboden, and C. C. Jaeger, Eds.), pp. 309–350. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Menzel, A., and Fabian, P. (1999). Growing season extended in Europe. Nature 397, 659.

    Article  CAS  Google Scholar 

  • Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., and Nemani, R. R. (1997). Increased plant growth in the northern high latitudes from 1981 to 1991. Nature 386, 698–702.

    Article  CAS  Google Scholar 

  • Penuelas, J., and Filella, I. (2001). Responses to a warming world. Science 294, 793–795.

    Article  CAS  Google Scholar 

  • Rupp, T. S., Chapin III, F. S., and Starfield, A. M. (2001). Modelling the influence of topographic barriers on treeline advance at the forest-tundra ecotone in Northwestern Canada. Climatic Change 48, 399–416.

    Article  Google Scholar 

  • Saetersdal, M., and Birks, H. J. B. (1997). A comparative ecological study of Norwegian mountain plants in relation to possible future climatic change. Journal of Biogeography 24, 127–152.

    Article  Google Scholar 

  • Schlüssel, A. (1999). Phàéologie, diversité et structure de la végétation dans l’écocline subalpin-alpin. Ph.D. thesis, University of Geneva.

    Google Scholar 

  • Steinger, T., Körner, C., and Schmid, B. (1996). Long-term persistance in a changing climate: DNA analysis suggests very old ages of clones of alpine Carex curvula. Oecologia 105, 94–99.

    Article  Google Scholar 

  • Theurillat, J.-R., Felber, F., Geissler, P., Gobat, J.-M., Fierz, M., Fischlin, A., Kupfer, P., Schlüssel, A., Velutti, C., and Zhao, G.-F. (1998). Sensitivity of plant and soils ecosystems of the Alps to climate change. In “Views from the Alps: Regional perspectives on climate change.” (P. Cebon, U. Dahinden, H. C. Davies, D. Imboden, and C. C. Jaeger, Eds.), pp. 225–308. MIT Press, Cambridge, Massachusetts.

    Google Scholar 

  • Theurillat, J.-R., and Schlüssel, A. (2000). Phenology and distribution strategy of key plant species within the subalpine-alpine ecocline in the Valaisian Alps (Switzerland). Phytocoenologia 30, 439–456.

    Article  Google Scholar 

  • Theurillat, J. P., and Guisan, A. (2001). Potential impact of climate change on vegetation in the European Alps: A review. Climatic Change 50, 77–109. See also the Erratum 53 (2002), 529–530.

    Article  CAS  Google Scholar 

  • Wagner, J., and Reichegger, B. (1997). Phenology and seed development of the alpine sedges Carex curvula and Carex firma in response to contrasting topoclimates. Arctic and Alpine Research 29, 291–299.

    Article  Google Scholar 

  • Walther, G.-R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J. C., Fromentin, J.-M., Hoegh-Guldberg, O., and Bairlein, F. (2002). Ecological responses to recent climate change. Nature 416, 389–395.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Guisan, A., Theurillat, JP. (2005). Monitoring Networks for Testing Model-Based Scenarios of Climate Change Impact on Mountain Plant Distribution. In: Huber, U.M., Bugmann, H.K.M., Reasoner, M.A. (eds) Global Change and Mountain Regions. Advances in Global Change Research, vol 23. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3508-X_47

Download citation

Publish with us

Policies and ethics