An Integrated Methodology for Propagating the Voice of the Customer into the Conceptual Design Process

  • Bernard Yannou
  • Jean-François Petiot
Conference paper


The elementary conceptual design loop is made of understanding and measuring the customer need, proposing product concepts and propagating the customer need along the product deployment, and finally assessing concepts in a multi-criteria way in regards to the need. Many methods from various disciplines (industrial/design engineering, psychophysics, multi-criteria decision analysis, marketing, artificial intelligence, statistical analysis) presently contribute partially to support this design loop. But few methods propose an integrated and coherent framework to deal with this elementary conceptual design loop. In this article, we propose such a methodology which is a coherent combination of classical methods in psychophysics, marketing and decision theory, namely multidimensional scaling, semantic differential method, factor analysis, pairwise comparison and Analytical Hierarchy Process. Our approach provides designers with a tool which helps the definition of the semantic part of the need, it rates and ranks the new product prototypes according to their proximity to the “ideal product”, and it underlines the particular semantic dimensions that could be improved. To illustrate our approach, we have performed users’ tests and applied our methodology to the design of table glasses. For clarity, each stage of the methodology is presented in detail on this particular example.

Key words

Product semantics Conceptual design Multidimensional scaling Pairwise comparison AHP 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. Vigier, La pratique du QFD, La petite encyclopédie de la qualité (Les éditions dl’organisation, 1992).Google Scholar
  2. 2.
    N. Suh, The Principles of Design (Oxford University Press, Oxford, 1993).Google Scholar
  3. 3.
    S. Aungst, R. Barton, D. Wilson, The Virtual Integrated Design Method, Quality Engineering, 565–579 (2003).Google Scholar
  4. 4.
    R.N. Shepard, K. Romney, S.B. Nerlove, Multidimensional scaling: Theory and applications in the behavioral sciences (Volume I: Theory) (New York, 1972).Google Scholar
  5. 5.
    F. Limayem, B. Yannou, Generalization of the RCGM and LSLR Pairwise Comparison Methods, to appear in Computers and Mathematics with Applications (2004).Google Scholar
  6. 6.
    K. Otto, E. Antonsson, The Method of Imprecision Compared to Utility Theory for Design Selection Problems, in ASME/DTM’ 93: Design Theory and Methodology (1993).Google Scholar
  7. 7.
    J.F. Allen, On the Aggregation of Preferences in Engineering Design, in ASME Design Engineering Technical Conferences (Pittsburgh, USA/PA, sept 9–12, 2001).Google Scholar
  8. 8.
    B. Yannou, F. Limayem, S. Hajsalem, Comparaison de la méthode SPEC et de ll’Analyse de la Valeur pour ll’aide à la conception préliminaire de produits, Mécanique et Industries 3(2), 189–200 (2002).Google Scholar
  9. 9.
    T.L. Saaty, The Analytic Hierarchy Process (McGraw-Hill, New-York, 1980).Google Scholar
  10. 10.
    B. Roy, Méthodologie multicritère dl’aide à la décision, SERIE: Production et techniques quantitatives appliquées à la gestion, ed. Gestion C., (Economica, 1985).Google Scholar
  11. 11.
    T. Ll’Eglise, P. De Lit, J. Danloy, B. Rekiek, A. Delchambre, A multi-criteria decision-aid method for material handling equipment selection, in IDMME2000: Third International Conference on Integrated Design and Manufacturing in Mechanical Engineering (Montréal, 16–19 may, 2000).Google Scholar
  12. 12.
    C.E. Osgood, G.J. Suci, P. Tannebaum, The measurement of meaning (Illinois Press, 1957).Google Scholar
  13. 13.
    P.E. Green, V. Srinivasan, Conjoint Analysis in Consumer Research: Issues and Outlook, Journal of Consumer Research 5, 103–123 (1978).Google Scholar
  14. 14.
    G.L. Urban, J.R. Hauser, Design and Marketing of New Products (Prentice Hall, New Jersey, 1993).Google Scholar
  15. 15.
    S.K. Gupta, A.K. Samuel, Integrating Market Research with the Product Development Process: a Step towards Design for Profit, in ASME Design Engineering Technical Conferences (Pittsburgh, USA/PA, sept 9–12, 2001).Google Scholar
  16. 16.
    H. Li, S. Azarm, Product Design Selection under Uncertainty and with Competitive Advantage, Journal of Mechanical Design 122, 411–418 (2000).CrossRefGoogle Scholar
  17. 17.
    ECRIN, Evaluation subjective: Méthodes, Applications et Enjeux, Les cahiers du club CRIN (Paris, 1997).Google Scholar
  18. 18.
    E.K. Antonsson, K.N. Otto, Imprecision in Engineering Design, Journal of Mechanical Design 117(B), 25–32 (1995).Google Scholar
  19. 19.
    M. Nagamachi, Kansei Engineering: A new ergonomic consumer-oriented technology for product development, International Journal of Industrial Ergonomics 15, 3–11 (1995).Google Scholar
  20. 20.
    T.W. Simpson, Peplinski, J.D., Koch P.N. and Allen, J.K., Metamodels for Computer-based Engineering Design: Survey and recommendations, Engineering with Computers 17, 129–150 (2001).Google Scholar
  21. 21.
    K. Krippendorff, R. Butter, Product semantics: Exploring the symbolic qualities of form, The Journal of the Industrial Designers Society of America, 4–9 (1984).Google Scholar
  22. 22.
    S.H. Hsu, M.C. Chuang, C.C. Chang, A semantic differential study of designers’ and users’ a product form perception, International Journal of Industrial Ergonomics 25, 375–391 (2000).Google Scholar
  23. 23.
    Y. Matsuoka, Method for constructing an inverse reasoning system for form generation from product image objectives, in ICED 99 (Munich, 1999).Google Scholar
  24. 24.
    R. Lin, C.Y. Lin, W. J., An application of multidimensional scaling in product semantics, International Journal of Industrial Ergonomics 18, 193–204 (1996).CrossRefGoogle Scholar
  25. 25.
    J-F. Petiot, B. Yannou, How to Comprehend and Assess Product Semantics — A Proposal for an Integrated Methodology, in International Conference on Engineering Design: ICEDl’03 (Stockholm, Sweden, 19–21 August, 2003).Google Scholar
  26. 26.
    T.L. Saaty, G. Hu, Ranking by the eigenvector versus other methods in the analytical hierarchy process, Applied Mathematical Letter 11(4), 121–125 (1998).MathSciNetGoogle Scholar
  27. 27.
    F.A. Lootsma, Performance evaluation of nonlinear optimization methods via multi-criteria decision analysis and via linear model analysis, in Nonlinear Optimization, Powell M.J.D. Editor, vol 1 (Academic Press, London, 1982).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Bernard Yannou
    • 1
  • Jean-François Petiot
    • 2
  1. 1.Ecole Centrale ParisLaboratoire de Génie IndustrielChâtenay-MalabryFrance
  2. 2.Ecole Centrale NantesIRCCyNNantes Cédex 3France

Personalised recommendations