Computer Assisted Design of Actuators for High Precision Adjustment in Micro Technology

  • Hinnerk Hagenah
  • Thomas Wurm
  • Manfred Geiger
Conference paper

Abstract

Micro systems technology is expected to play a pivotal part in future product development both in scientific and industrial fields. Decreasing size and tolerances make mounting and joining operations quite a challenging task. Laser adjustment is a suitable technology to achieve the necessary accuracy by processing specifically designed actuators on which the functional elements have been mounted. Nowadays, the specifically tailored design of these actuators is performed by experts through an iterative process. In this paper we will present the concept and parts of the design and development of a computer based assistance system helping the designer define new actuator geometries. We will introduce a data model to describe already existing actuator geometries and summarise them in a construction catalogue. The adjustment task at stake is described by means of kinematic chains. The design of actuator geometry therefore boils down to the design of a kinematic chain. A suitable kinematic chain is sought for and computed using the Denavit-Hartenberg method which has been extended to handle closed kinematic chains as well.

Key words

Actuator design Manufacturing processes Laser adjustment Micro systems technology 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  1. 1.
    W. Hoving. Laser applications in micro technology, Laser Assisted Net Shape Engineering 2, Proceedings of the LANE’ 97, M. Geiger, F. Vollertsen, Bamberg: Meisenbach, 1997, pp. 69–80Google Scholar
  2. 2.
    F. Vollertsen. Laserstrahlumformen-Lasergestützte Formgebung: Verfahren, Mechanismen, Modellierung, Bamberg: Meisenbach, ISBN 3-87525-071-0, 1996Google Scholar
  3. 3.
    M. Geiger, B. Müller. Coupling of analytical and numerical models for laser adjustment, Lasers in Engineering, Nr. 7 (1998), pp. 275–286Google Scholar
  4. 4.
    F. Vollertsen. An analytical model for laserbending, Laser in Engineering, Vol. 2, 1993, pp. 261–276Google Scholar
  5. 5.
    A. Huber. Justieren vormontierter Systeme mit dem Nd:YAG-Laser unter Einsatz von Aktoren, Bamberg: Meisenbach, PhD-Thesis, ISBN 3-87525-153-9, 2001Google Scholar
  6. 6.
    C. Hamann, H.G. Rosen. Relaisfederjustierung mittels gepulster Nd: YAG-Laser, Laser/Opto-elektronik in der Technik, W. Waidelich, Berlin: Springer, 1990, pp. 661–665Google Scholar
  7. 7.
    T. Hennige. Laser forming of spatially curved parts, Laser Assisted Net Shape Engineering 2, Proceedings of the LANE’ 97, M. Geiger, F. Vollertsen, Bamberg: Meisenbach, 1997, pp. 409–420Google Scholar
  8. 8.
    F. Pfeiffer, E. Reithmeier. Roboterdynamik, Stuttgart: Teubner, 1987Google Scholar
  9. 9.
    J. Denavit, R.S. Hartenberg. A Kinetic Notation for Lower-Pair Mechanisms Based on Matrices, ASME Journal of Applied Mechanics, pp. 215–221, 1955Google Scholar
  10. 10.
    A. Huber, B. Müller. Verkürzte Prozeßzeiten beim Laserstrahljustieren durch optimierte Regelkonzepte., Laser in der Elektronikproduktion & Feinwerktechnik, LEFl’99, M. Geiger, A. Otto, Bamberg: Meisenbach, 1999, pp. 157–168Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • Hinnerk Hagenah
    • 1
  • Thomas Wurm
    • 1
  • Manfred Geiger
    • 1
  1. 1.Manufacturing TechnologyUniversityof Erlangen-NurembergErlangenGermany

Personalised recommendations