Skip to main content

Nutrient Turnover, Greenhouse Gas Exchange and Biodiversity in Natural Forests of Central Europe

  • Conference paper
Book cover Tree Species Effects on Soils: Implications for Global Change

Abstract

We measured microbial turnover of carbon (C) and nitrogen (N) in 12 natural forest reserves in Austria, and estimated potential emission rates of nitrous oxide (N2O) and carbon dioxide (CO2), and uptake rates of methane (CH4). The community composition of soil microorganisms was investigated using PLFA (phospholipid fatty acid) analysis and molecular tools, and we examined the biodiversity of selected taxa of micro-, meso- and macrofauna. These characterizations of natural forests provide reference data for evaluating soil biology in managed, especially disturbed or damaged forests. Ecophysio-logical quotients were tested for their ability to make predictions about the carbon dynamics of forest soils. The 12 forests represented the six typical types in Central Europe: oak, beech, spruce-fir-beech, floodplain, and pine forests. Nitrogen turnover rates were high in moist soils with high pH. Nitrogen losses as nitrate or N2O were small unless N deposition exceeded 30 kg ha−1 yr−1. The fastest turnover of C and N occurred in the floodplain forests, based on microbial quotients, xylanase activity, the relative thickness of litter layer and 15N abundance in the organic soil. Carbon turnover was slowest in the beech forests on acidic bedrock, and slow turnover may lead to the largest net C accumulation. Tree species had distinct effects on microbial communities, but high soil biodiversity in these natural forests may not be greater than in managed forests.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ambus P and Christensen S 1995 Spatial and seasonal nitrous oxide and methane fluxes in Danish forest-, grassland-, and agroecosystems. J. Environ. Qual. 24, 993–1001.

    Article  CAS  Google Scholar 

  • Axelrood P E, Chow M L, Radomski C C, McDermott J M and Davies J 2002 Molecular characterization of bacterial diversity from British Columbia forest soils subjected to disturbance. Can. J. Microbiol. 48, 655–674.

    Article  PubMed  CAS  Google Scholar 

  • Binkley D and Giardina C 1998 Why do tree species affect soils? The warp and woof of tree-soil interactions. Biogeochemistry 42, 89–106.

    Article  Google Scholar 

  • Binkley D and Hart S C 1989 The components of nitrogen availability assessments in forest soils. Adv. Soil Sci. 10, 57–112.

    CAS  Google Scholar 

  • Bohn U, Gollub G, Hettwer C, Neuhauslova Z, Schlueter H and Weber H 2003 Karte der natuerlichen Vegetation Europas. Map of the natural vegetation of Europe. Federal Agency for Nature Conservation, Bonn.

    Google Scholar 

  • Butterbach-Bahl K and Papen H 2002 Four years continuous record of CH4-exchange between the athmosphere and untreated and limed soil of a N-saturated spruce and beech forest ecosystem in Germany. Plant Soil 240, 77–90.

    Article  CAS  Google Scholar 

  • Crutzen P J 1991 Methane’s sinks and sources. Nature 350, 380–381.

    Article  Google Scholar 

  • Devlin R M and Witham F H 1983 Plant Physiology. PWS Publishers, California. 577 pp.

    Google Scholar 

  • Drapela T 2003 Ground beetle communities of two floodplain forests in eastern Austria: indicating natural and dynamic conditions? 33. Jahrestagung Ges. f. Ökologie 33, 333 pp.

    Google Scholar 

  • Dunbar J, Takala S, Barns S M, Davies J A and Kuske C R 1999 Levels of bacterial community diversity in four arid soils compared by cultivation and 16S rRNA gene cloning. Appl. Environ. Microbiol. 65, 1662–1669.

    PubMed  CAS  Google Scholar 

  • Foissner W, Berger H, Xu K and Zechmeister-Boltenstern S 2004 A huge, undescribed soil ciliate (Protozoa: Ciliophora) diversity in natural forest stands of Central Europe. Biodiversity and Conservation. In press.

    Google Scholar 

  • Frostegård Å, Tunlid A and Bååth E 1996 Changes in microbial community structure during long-term incubation in two soils experimentally contamined with metals. Soil Biol. Biochem. 28, 55–63.

    Article  Google Scholar 

  • Giardina C P and Ryan M G 2000 Evidence that decomposition rates of organic carbon in mineral soil do not vary with temperature. Nature 404, 858–861.

    Article  PubMed  CAS  Google Scholar 

  • Grabherr G, Koch G, Kirchmeir H and Reiter K 1995 Hemerobie österreichischer Waldökosysteme — Vorstellung eines Forschungsvorhabens im Rahmen des österreichischen Beitrags zum MAB-Programm der UNESCO. Zeitschrift für Ökologie und Naturschutz 4, 131–136.

    Google Scholar 

  • Haberbauer G, Gerzabek M H and Krenn A 2002 Nitrate dynamics in an alpine forest site (Mühleggerköpfl). O and N stable isotope analysis in natural water samples. Environmental Science and Pollution Research. Special Issue 2, 37–41.

    Google Scholar 

  • Hackl E, Zechmeister-Boltenstern S and Bachmann G 1999 Mikrobielle Umsatzraten in Böden von Naturwäldern. Mittlgn. Dtsch. Bodenkundl. Gesellsch. 89, 241–244.

    Google Scholar 

  • Hackl E, Bachmann G and Zechmeister-Boltenstern S 2000 Soil microbial biomass and rhizosphere effects in natural forest stands. Phyton 40, 83–90.

    Google Scholar 

  • Hackl E, Pfeffer M, Donat C, Bachmann G and Zechmeister-Boltenstern S 2004a Microbial nitrogen turnover in soils under different types of natural forest. For. Ecol. Manag. 188, 101–112.

    Article  Google Scholar 

  • Hackl E, Zechmeister-Boltenstern S, Bodrossy L and Sessitsch A 2004b Comparison of diversities and compositions of bacterial populations inhabiting natural forest soils. Appl. Environ. Microbiol. 70, 5057–5065.

    Article  PubMed  CAS  Google Scholar 

  • Hackl E, Pfeffer M, Donat C, Bachmann G, Zechmeister-Boltenstern S 2004c Composition of the microbial communities in the mineral soil under different types of natural forest. Soil Biol. Biochem. In press.

    Google Scholar 

  • Haertel E, Zechmeister-Boltenstern S and Gerzabek M 2002 Gaseous nitrogen losses from a forest site in the north Tyrolean limestone alps. Environmental Science and Pollution Research. Special Issue 2, 23–30.

    Article  Google Scholar 

  • Heil B, Ludwig B, Flessa H and Beese F 2000 13C and 15N distributions in three spodic dystric cambisols under beech and spruce. Isotopes Environ. Health Stud. 36, 35–47.

    PubMed  CAS  Google Scholar 

  • Högberg P 1997 15 N natural abundance in soil-plant systems. New Phytol. 137, 179–203.

    Article  Google Scholar 

  • Insam H and Domsch K H 1988 Relationship between soil organic carbon and microbial biomass on chronosequences of reclamation sites. Microbial Ecol. 15, 177–188.

    Article  Google Scholar 

  • Insam H and Öhlinger R 1996 Ecophysiological parameters. In Methods in Soil Biology. Eds. F Schinner, R Öhlinger, E Kandeler, R Margesin. pp. 306–309. Springer Verlag, Berlin.

    Google Scholar 

  • IPCC 2001 Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change Eds. J T Houghton, Y Ding, D J Griggs, M Noguer, P J van der Linden, X Dai, K Maskell, and C A Johnson. pp. 881. Cambridge University Press, Cambridge.

    Google Scholar 

  • Jones R J A, Hiederer R, Rusco E, Loveland P J and Montanarella L 2004 The map of organic carbon in top soils in Europe, Version 1.2 September 2003: Explanation of Special Publication Ispra 2004 No.72 (S.P.I.04.72). European Soil Bureau Research Report No.17, EUR 21209 EN, 26pp. and 1 map in ISO B1 format. Office for Official Publications of the European Communities, Luxembourg.

    Google Scholar 

  • Kandeler E 1996a Ammonium. In Methods in Soil Biology. Eds. F Schinner, R Öhlinger, E Kandeler and R Margesin. pp. 406–408. Springer, Berlin.

    Google Scholar 

  • Kandeler E 1996b N-Mineralisation under waterlogged conditions. In Methods in Soil Biology. Eds. F Schinner, R Öhlinger, E Kandeler and R Margesin. pp. 141–143. Springer, Berlin.

    Google Scholar 

  • Kandeler E 1996c Urease activity by colorimetric technique. In Methods in Soil Biology. Eds. F Schinner, R Öhlinger, E Kandeler and R Margesin. pp. 171–174. Springer, Berlin.

    Google Scholar 

  • Kandeler E 1996d Nitrate. In Methods in Soil Biology. Eds. F Schinner, R Öhlinger, E Kandeler and R Margesin. pp. 408–410. Springer, Berlin.

    Google Scholar 

  • Kaye J P, Binkley D and Rhoades C 2003 Stable soil nitrogen accumulation and flexible organic matter stoichiometry during primary floodplain succession. Biogeochemistry 63, 1–22.

    Article  CAS  Google Scholar 

  • Killham K 1994 Soil Ecology, Cambridge University Press, Cambridge.

    Google Scholar 

  • Klose S, Wernecke K D and Makeschin F 2003 Microbial biomass and enzyme activities in coniferous forest soils as affected by lignite-derived deposition. Biol. Fertil Soils 38, 32–44.

    Article  CAS  Google Scholar 

  • Knoepp J D, Coleman D C, Crossley Jr D A and Clark J S 2000 Biological indices of soil quality: an ecosystem case study of their use. For. Ecol. Manag. 138, 357–368.

    Article  Google Scholar 

  • Koba K, Tokuchi N, Yoshioka T, Hobbie E A and Iwatsubo G 1998 Natural abundance of nitrogen-15 in a forest soil. Soil Sci. Soc. Am. J. 62, 778–781.

    Article  CAS  Google Scholar 

  • Kutschera L and Lichtenegger E 2002 Wurzelatlas mitteleuropäischer Waldbäume und Sträucher. Stocker Verlag, Graz. 604 pp.

    Google Scholar 

  • Leip A, Matteucci G, Seufert G and Meroni M 2003 Greenhouse gas fluxes in a poplar plantation compared to a natural forest in Parco Ticino, Italy: the JCR Kyoto experiment. Geophysical Research Abstracts 11594.

    Google Scholar 

  • Lovett G M, Weathers K C, Arthur M A and Schultz J C 2004 Nitrogen cycling in a northern hardwood forest: Do species matter? Biogeochemistry 67, 289–308.

    Article  CAS  Google Scholar 

  • Mayer H 1984 Waldbau auf soziologisch-ökologischer Grundlage, 3. Auflage. Gustav Fischer, Stuttgart-New York.

    Google Scholar 

  • MCPFE Liaison Unit Vienna and UNECE/FAO (Eds) 2003 State of Europe’s Forests 2003 — The MCPFE Report on Sustainable Forest Management in Europe, Liaison Unit Vienna, Austria; 115pp. (www.mcpfe.org).

    Google Scholar 

  • Nestroy O, Danneberg O, Englisch M, Gessl H, Hager H, Kilian W, Nelhiebl P, Pecina O Schneider W, Pehamberger A and Wagner J 2000 Österreichische Bodensystematik 2000. Mitt. OEBG 60, Wien, 92 pp.

    Google Scholar 

  • Paul E A and Clark F E 1996 Soil Microbiology and Biochemistry, 2nd Ed. Academic Press, London.

    Google Scholar 

  • Pomorski R J, Leithner C and Bruckner A 2003 Protaphorura christiani n. sp. from Austria, with remarks on the generic status of Protaphorura stiriaca (Stach, 1946) (Collembola: Onychiuridae). Genus 14, 307–312.

    Google Scholar 

  • Prescott C E, Zabek L M, Staley C L and Kabzems R 2000 Decomposition of broadleaf and needle litter in forests of British Columbia: influences of litter type, forest type and litter mixtures. Can. J. For. Res. 30, 1742–1750.

    Article  Google Scholar 

  • Ricotta C, Carranza M J, Avena G and Blasi C 2002 Are potential natural vegetation maps a meaningful alternative to neutral landscape models and quest? Appl. Veg. Sci. 5, 271–275.

    Google Scholar 

  • Rigler E and Zechmeister-Boltenstern S 1999 Oxidation of ethylene and methane in forest soils — effect of CO2 and mineral nitrogen. Geoderma 90, 147–159.

    Article  CAS  Google Scholar 

  • Roulet N T 2000 Peatlands, carbon storage, greenhouse gases and the Kyoto-Protocol: prospects and significance for Canada. Wetland 20, Issue 4, 605–615.

    Google Scholar 

  • Schimel D S, House J I, Hibbard K A, Bousquet P, Ciais P, Peylin P, Braswell B H, Apps M J, Baker D, Bondeau A, Canadell J, Churkinal G, Cramer W, Denning A S, Field C B, Friedlingstein P, Goodale C, Heimann M, Houghton R A, Melillo J M, Moore III B, Murdiyarso D, Noble I, Pacala S W, Prentice I C, Raupach M R, Rayner P J, Scholes R J, Steffen W L and Wirth C 2001 Recent patterns and mechanisms of carbon exchange by terrestrial ecosystems. Nature 414, 169–172.

    Article  PubMed  CAS  Google Scholar 

  • Swift M J, Andrén O, Brussaard L, Briones M, Couteaux M.-M., Ekschmitt K, Kjoller A, Loiseau P and Smith P 1998 Global change, soil biodiversity, and nitrogen cycling in terrestrial ecosystems: three case studies. Glob. Change Biol. 4, 729–743.

    Article  Google Scholar 

  • Šantrůčková H, Bird M I, Kalaschnikov Y N, Grund M, Elhottová D, Šimek M, Grigoryev S, Gleixner G, Arneth A, Schulze E D and Lloyd J 2003 Microbial characteristics of soil on a latitudinal transect in Siberia. Glob. Change Biol. 9, 1106–1117.

    Article  Google Scholar 

  • Šantrůčková H and Straškraba M 1991 On the relationship between specific respiration activity and microbial biomass in soils. Soil Biol. Biochem.. 23, 525–532.

    Article  Google Scholar 

  • Templer P, Findlay S and Lovett G 2003 Soil microbial biomass and nitrogen transformations among five tree species of the Catskill Mountains, New York, USA. Soil Biol. and Biochem. 35, 607–613

    Article  CAS  Google Scholar 

  • Thomas K D and Prescott C E 2000 Nitrogen availability in forest floors of three tree species on the same site: the role of litter quality. Can. J. For. Res. 30, 1698–1706.

    Article  CAS  Google Scholar 

  • Trumbore S E, Chadwick O A and Amundson R 1996 Rapid exchange of soil carbon and atmospheric CO2 driven by temperature change. Science 272, 393–396.

    CAS  Google Scholar 

  • Valentini R, Matteucci A J, Dolman A J, Schulze E D, Rebmann C, Moors E J, Granier A, Gross P, Jensen N O, Pilegaard K, Lindroth A, Grelle A, Bernhofer C, Grunwald T, Aubinet M, Ceulemans R, Kowalski A S, Vesala T, Rannik U, Berbigier P and Loustau D 2000 Respiration as the main determinant of carbon balance in European forests. Nature 404, 861–865.

    Article  PubMed  CAS  Google Scholar 

  • Waitzbauer W and Zabransky P 2003 Der Urwald “Rothwald” (niederösterreichische Kalkalpen), ein Zentrum entomologischer Biodiversität. 33. Jahrestagung Ges. f. Ökologie 33, 98 pp.

    Google Scholar 

  • Wanek W and Arndt S K 2002 The δ15N variation between nodulated roots and shoots of soybean reflects the relative contribution of symbiotic N2 fixation to plant N acquisition. J. Exp. Bot. 53, 1109–1118.

    Article  PubMed  CAS  Google Scholar 

  • Wardle D A and Ghani A 1995 A critique of the microbial quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biol. Biochem. 12, 1601–1610.

    Article  Google Scholar 

  • Zechmeister-Boltenstern S 1994 Measurement of actual and potential denitrification and soil respiration with an automated gas chromatographic system. Austrian Journal of Agricultural Research 45, 219–226.

    CAS  Google Scholar 

  • Zechmeister-Boltenstern S and Nikodim L 1999 Effect of water tension on ethylene production and consumption in montane and lowland soils. Eur. J. Soil Sci. 50, 1–8.

    Article  Google Scholar 

  • Zechmeister-Boltenstern S, Hackl E, Bachmann G, Donat C and Pfeffer M 2000 Microbial nutrient turnover in forests with natural tree species composition. Proceedings of the International Conference on Forest Ecosystem Restoration, April 2000, Universität für Bodenkultur, Vienna, pp. 296–299.

    Google Scholar 

  • Zechmeister-Boltenstern S, Hahn M, Meger S and Jandl R 2002 N2O emission and nitrateleaching in relation to microbial dynamics in a beech forest soil. Soil Biol. and Biochem. 116, 823–832.

    Article  Google Scholar 

  • Zechmeister-Boltenstern S, Schindlbacher A, Ambus P and Butterbach-Bahl K 2004 Nitrogen oxides emissions in relation to microbial parameters at 13 European forest sites. Geophysical Research Abstracts 6, 5151.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Zechmeister-Boltenstern, S., Hackl, E., Bachmann, G., Pfeffer, M., Englisch, M. (2005). Nutrient Turnover, Greenhouse Gas Exchange and Biodiversity in Natural Forests of Central Europe. In: Binkley, D., Menyailo, O. (eds) Tree Species Effects on Soils: Implications for Global Change. NATO Science Series IV: Earth and Environmental Sciences, vol 55. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3447-4_3

Download citation

Publish with us

Policies and ethics