Skip to main content

Recursive Interpolation Technique for Binary Images Based on Morphological Median Sets

  • Conference paper

Part of the Computational Imaging and Vision book series (CIVI,volume 30)

Abstract

Interpolation is an important step in many applications of image processing. This paper presents a morphological interpolation technique for binary images based on the median set concept. A characteristic of our method is that it treats recursively the connected components of input slices. This technique uses the minimal skeleton by pruning (MSP) as reference points for translating connected components; this fact guarantees the non-empty intersection between them.

Keywords

  • Mathematical Morphology
  • Image Processing
  • Image Analysis
  • Interpolation
  • Median Set

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Serge Beucher. Interpolations d’ensembles, de partitions et de functions. Technical Report N-18/94/MM, Centre de Morphologie Mathématique, May 1994.

    Google Scholar 

  2. Edward R. Dougherty and Roberto A. Lotufo. Hands-on Morphological Image Processing. SPIE Press, Bellingham, WA, 2003.

    Google Scholar 

  3. Marcin Iwanowski. Application of Mathematical Morphology to Image Interpolation. PhD thesis, School of Mines of Paris-Warsaw University of Technology, 2000.

    Google Scholar 

  4. Marcin Iwanowski and Jean Serra. The morphologycal-affine object deformation. In Luc Vincent John Goutsias and Dan S. Bloomberg, editors, International Symposium on Mathematical Morphology, Palo Alto, CA, page 445. Kluwer Academics Publishers, 2000.

    Google Scholar 

  5. Erik Meijering. A chronology of interpolation: From ancient astronomy to modern signal and image processing. Proceedings of the IEEE, 90(3):319–342, March 2002.

    CrossRef  Google Scholar 

  6. Fernand Meyer. Interpolations. Technical Report N-16/94/MM, Centre de Morphologie Mathématique, May 1994.

    Google Scholar 

  7. Jean Serra. Mathematical Morphology. Volume I. London: Academic Press, 1982.

    Google Scholar 

  8. Jean Serra, editor. Mathematical Morphology. Volume II: Theoretical advances. London: Academic Press, 1988.

    Google Scholar 

  9. Jean Serra. Interpolations et distances of Hausdorff. Technical Report N-15/94/MM, Centre de Morphologie Mathématique, May 1994.

    Google Scholar 

  10. Jean Serra. Hausdorff distances and interpolations. In Henk J.A.M. Heijmans and Jos B.T.M. Roerdink, editors, Mathematical Morphology and its Applications to Images and Signal Processing, Dordrecht, The Netherlands. Kluwer Academics Publishers, 1998.

    Google Scholar 

  11. Pierre Soille. Spatial distributions from contour lines: an efficient methodology based on distance transformations. Journal of Visual Communication and Image Representation, 2(2):138–150, June 1991.

    CrossRef  Google Scholar 

  12. Pierre Soille. Morphological Image Analysis: Principles and Applications. Springer-Verlag, 2nd edition, 2003.

    Google Scholar 

  13. Gabor T. Herman, Jingsheng Zheng, and Carolyn A. Bucholtz. Shape-based interpolation. IEEE Computer Graphics and Application, 12(3):69–79, May 1992.

    CrossRef  Google Scholar 

  14. Javier Vidal, Jose Crespo, and Victor Maojo. Inclusion relationships and homotopy issues in shape interpolation for binary images. In accepted in 12th International Conference on Discrete Geometry for Computer Imagery, April 2005.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Vidal, J., Crespo, J., Maojo, V. (2005). Recursive Interpolation Technique for Binary Images Based on Morphological Median Sets. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics