Abstract
We present a constrained shape optimisation problem solved via metaheuristic stochastic techniques. Genetic Algorithms are briefly reviewed and their adaptation to surface topography optimisation is studied. An application to flow optimisation issues is presented.
Keywords
- Shape
- Topography
- Stochastic Optimisation
- Genetic Algorithms
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
D.E. Goldberg, Genetic Algorithms in Search, Optimization and machine Learning, Addison-Wesley, 1989.
R. Otten and L. van Ginneken, The Annealing Algorithm, Kluwer, Boston, 1989.
Z. Michalewicz and C. Z. Janikov, Handling constraints in Genetic Algorithms, ICGA, p. 151–157, 1991.
J.H. Holland, Adaptation in Natural and Artificial Systems, MIT Press/Bradford Books, 1992.
Marc Schoenauer and Spyros Xanthakis, Constrained GA optimization, Proceedings of the 5th International Conference on Genetic Algorithms, Urbana Champaign, 1993.
Neal R. Harvey and Stepehen Mmarshall, The use of Genetic Algorithms in morphological filter design, Signal Processing: Image Communication, n. 8, p. 55–71, 1996.
Neal R. Harvey and Stepehen Marshall, Grey-Scale Soft Morphological Filter Optimization by Genetic Algorithms, University of Strathclyde, Glasgow, 1997.
C. A. Caciu and E. Decencière, Etude numérique de l’écoulement 3D d’un fluide visqueux incompressible entire une plaque lisse et une plaque rugueuse, N-03/04/MM, Centre de Morphologie Mathematique, ENSMP, 2004.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer
About this paper
Cite this paper
Caciu, C.A., Decencière, E., Jeulin, D. (2005). Stochastic Shape Optimisation. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_30
Download citation
DOI: https://doi.org/10.1007/1-4020-3443-1_30
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3442-8
Online ISBN: 978-1-4020-3443-5
eBook Packages: Computer ScienceComputer Science (R0)
