Skip to main content

Grey-Weighted, Ultrametric and Lexicographic Distances

  • Conference paper

Part of the Computational Imaging and Vision book series (CIVI,volume 30)

Abstract

Shortest distances, grey weighted distances and ultrametric distance are classically used in mathematical morphology. We introduce a lexicographic distance, for which any segmentation with markers becomes a Voronoï tessellation.

Keywords

  • Grey-weighted distances
  • ultrametric distances
  • lexicographic distances
  • marker segmentation
  • path algebra

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Beucher and F. Meyer. The morphological approach to segmentation: the watershed transformation. In E. Dougherty, editor, Mathematical morphology in image processing, chapter 12, pages 433–481. Marcel Dekker, 1993.

    Google Scholar 

  2. G. Borgefors. Distance transforms in arbitrary dimension. Comput. Vision, Graphics, Image Processing, 27:321–345, 1984.

    Google Scholar 

  3. T. Deschamps and L. Cohen. Fast extraction of minimal paths in 3D images and applications to virtual endoscopy. Medical Image Analysis, 5(4), Dec. 2001.

    Google Scholar 

  4. M. Gondran and M. Minoux. Graphes et Algorithmes. Eyrolles, 1995.

    Google Scholar 

  5. C. Lenart. A generalized distance in graphs. Siam J. of discrete mathematics, 11(2):293–304, 1998.

    CrossRef  Google Scholar 

  6. F. Meyer. Minimal spanning forests for morphological segmentation. ISMM94: Mathematical Morphology and its applications to Signal Processing, pages 77–84, 1994.

    Google Scholar 

  7. F. Meyer. Topographic distance and watershed lines. Signal Processing, pages 113–125, 1994.

    Google Scholar 

  8. F. Meyer. An overview of morphological segmentation. International Journal of Pattern Recognition and Artificial Intelligence, 17(7):1089–1118, 2001.

    CrossRef  Google Scholar 

  9. F. Meyer and S. Beucher. Morphological segmentation. jvcip, 1(1):21–46, Sept. 1990.

    Google Scholar 

  10. L. Najman and M. Schmitt. Watershed of a continuous function. Signal Processing, 38:99–112, July 1994.

    CrossRef  Google Scholar 

  11. M. Schmitt. Ubiquity of the distance function in mathematical morphology. In F. Meyer and M. Schmitt, editors, Geostatistics, Mathematical Morphology, Random Sets…, a Tribute to Georges Matheron. Springer, 2005.

    Google Scholar 

  12. P. Verbeek and B. Verwer. Shading from shape, the eikonal equation solved by grey-weighted distance transform. Pattern Recogn. Lett., 11:618–690, 1990.

    CrossRef  Google Scholar 

  13. L. Vincent. Minimal paths algorithms for the robust detection of linear features in images. In H. Heijmans and J. Roerdink, editors, Mathematical Morphology and Its Applications to Image Processing, pages 331–338. Kluwer, 1998.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Meyer, F. (2005). Grey-Weighted, Ultrametric and Lexicographic Distances. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_26

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_26

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics