Skip to main content

Downsampling of Binary Images Using Adaptive Crossing Numbers

  • Conference paper

Part of the Computational Imaging and Vision book series (CIVI,volume 30)

Abstract

A downsampling method for binary images is presented, which aims at preserving the topology of the image. It uses a general reference sampling structure. The reference image is computed through the analysis of the connected components of the neighborhood of each pixel. The resulting downsampling operator is auto-dual, which ensures that white and black structures are treated in the same way. Experiments show that the image topology is indeed preserved, when there is enough space, satisfactorily.

Keywords

  • Digital topology
  • binary downsampling
  • reference downsampling

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Borgefors, G. Ramella, and G. Sanniti di Baja. Multiresolution representation of shape in binary images. In S. Miguet, A. Montanvert, and S. Ubéda, editors, Discrete Geometry for Computer Imagery, (Proceedings DCGI’96), pages 51–58, Lyon, France, November 1996. Springer.

    Google Scholar 

  2. G. Borgefors, G. Ramella, and G. Sanniti di Baja. Shape and topology preserving multivalued image pyramids for multi-resolution skeletonization. Pattern Recognition Letters, 22:741–751, 2001.

    CrossRef  Google Scholar 

  3. G. Borgefors, G. Ramella, G. Sanniti di Baja, and S. Svensson. On the multiscale representation of 2d and 3d shapes. Graphical Models and Image Processing, 61:44–62, 1999.

    CrossRef  Google Scholar 

  4. E. Decencière and M. Bilodeau. Downsampling of binary imagesusing adaptive crossing numbers. Technical Report N 01/05/MM, Ecole des Mines de Paris, Centre de Morphologie Mathématique, January 2005.

    Google Scholar 

  5. E. Decencière, B. Marcotegui, and F. Meyer. Content dependent image sampling using mathematical morphology. In J. Goutsias, L. Vincent, and D.S. Bloomberg, editors, Mathematical Morphology and its applications to signal processing (Proceedings ISMM’2000), pages 263–272, Palo Alto, CA, United States, June 2000. Kluwer Academic Publishers.

    Google Scholar 

  6. E. Decencière, B. Marcotegui, and F. Meyer. Content-dependent image sampling using mathematical morphology: application to texture mapping. Signal Processing: Image Communication, 16(6):567–584, February 2001.

    CrossRef  Google Scholar 

  7. D.A.F. Florêncio and R.W. Schafer. Critical morphological sampling and its applications to image coding. In Mathematical Morphology and its Applications to Image Processing (Proceedings ISMM’94), pages 109–116, September 1994.

    Google Scholar 

  8. R.M. Haralick, X. Zhuang, C. Lin, and J.S.J. Lee. The digital morphological sampling theorem. IEEE Transactions on Acoustics, Speech and Signal Processing, 37:2067–2090, December 1989.

    Google Scholar 

  9. H.J.A.M. Heijmans and A. Toet. Morphological sampling. Computer Vision, Graphics, and Image Processing: Image Understanding, 54:384–400, November 1991.

    Google Scholar 

  10. C.J. Hilditch. Linear skeletons from square cupboards. In B. Meltzer and D. Michie, editors, Machine Intelligence, Vol. 4, pages 403–420. Edinburgh Univ. Press, 1969.

    Google Scholar 

  11. T.Y. Kong and A. Rosenfeld. Digital topology: introduction and survey. Computer Vision, Graphics, and Image Processing, 48:357–393, 1989.

    Google Scholar 

  12. D. Rutovitz. Pattern recognition. J. Royal Statist. Soc., 129:504–530, 1966.

    Google Scholar 

  13. S. Yokoi, J. Toriwaki, and T. Fukumura. Topological properties in digital binary pictures. Systems Comput. Controls, 4:32–40, 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Decencière, E., Bilodeaul, M. (2005). Downsampling of Binary Images Using Adaptive Crossing Numbers. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_25

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_25

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics