Skip to main content

Euclidean Skeletons of 3D Data Sets in Linear Time by the Integer Medial Axis Transform

  • Conference paper

Part of the Computational Imaging and Vision book series (CIVI,volume 30)

Abstract

A general algorithm for computing Euclidean skeletons of 3D data sets in linear time is presented. These skeletons are defined in terms of a new concept, called the integer medial axis (IMA) transform. The algorithm is based upon the computation of 3D feature transforms, using a modification of an algorithm for Euclidean distance transforms. The skeletonization algorithm has a time complexity which is linear in the amount of voxels, and can be easily parallelized. The relation of the IMA skeleton to the usual definition in terms of centers of maximal disks is discussed.

Keywords

  • Feature transform
  • integer medial axis
  • 3-D Euclidean skeletonization

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Attali and A. Montanvert. Computing and simplifying 2D and 3D continuous skeletons. Computer Vision and Image Understanding, 67(3):161–273, 1997.

    CrossRef  Google Scholar 

  2. S. Beucher. Digital skeletons in Euclidean and geodesic spaces. Signal Processing, 38:127–141, 1994.

    CrossRef  Google Scholar 

  3. H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn, editor, Proc. Symposium Models for the perception of speech and visual form, Boston, November 1964, pages 362–380. MIT Press, Cambridge, MA, 1967.

    Google Scholar 

  4. G. Borgefors, I. Nystrom, and G. S. D. Baja. Computing skeletons in three dimensions. Pattern Recognition, 32(7):1225–1236, 1999.

    CrossRef  Google Scholar 

  5. D. Coeurjolly. d-Dimensional reverse Euclidean distance transformation and Euclidean medial axis extraction in optimal time. In N. et al., editor, DGCI2003, pages 327–337, New York, 2003. Springer. (LNCS 2886).

    Google Scholar 

  6. P. E. Danielsson. Euclidean distance mapping. Comp. Graph. Im. Proc., 14:227–248, 1980.

    Google Scholar 

  7. Y. Ge and J. Fitzpatrick. On the generation of skeletons from discrete Euclidean distance maps. IEEE Trans. Pattern Anal. Machine Intell., 18:1055–1066, 1996.

    CrossRef  Google Scholar 

  8. T. Hirata. A unified linear-time algorithm for computing distance maps. Information Processing Letters, 58:129–133, 1996.

    CrossRef  Google Scholar 

  9. C. M. Ma and M. Sonka. A fully parallel 3d thinning algorithm and its applications. Computer Vision and Image Understanding, 64:420–433, 1996.

    CrossRef  Google Scholar 

  10. P. Maragos and R. W. Schafer. Morphological skeleton representation and coding of binary images. IEEE Trans. Acoust. Speech Signal Proc., ASSP-34:1228–1244, 1986.

    CrossRef  Google Scholar 

  11. C. R. Maurer Jr., R. Qi, and V. Raghavan. A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. IEEE Trans. Pattern Anal. Machine Intell., 25(2):265–270, 2003.

    CrossRef  Google Scholar 

  12. C. R. Maurer Jr., V. Raghavan, and R. Qi. A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. In Information Processing in Medical Imaging, pages 358–364, 2001.

    Google Scholar 

  13. A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink. A general algorithm for computing distance transforms in linear time. In J. Goutsias, L. Vincent, and D. S. Bloomberg, editors, Mathematical Morphology and its Applications to Image and Signal Processing, pages 331–340. Kluwer Acad. Publ., Dordrecht, 2000.

    Google Scholar 

  14. F. Meyer. The binary skeleton in three steps. In Proc. IEEE Workshop on Computer Architecture and Image Database Management, IEEE Computer Society Press, pages 477–483, 1985.

    Google Scholar 

  15. J. R. Parker. Algorithms for Image Processing and Computer Vision. John Willey & Sons, 1996.

    Google Scholar 

  16. E. Remy and E. Thiel. Look-up tables for medial axis on squared Euclidean distance transform. In N. et al., editor, DGCI 2003, pages 224–235, New York, 2003. Springer. (LNCS 2886).

    Google Scholar 

  17. J. Serra. Image Analysis and Mathematical Morphology. Academic Press, New York, 1982.

    Google Scholar 

  18. F. Y. Shih and C. C. Pu. A skeletonization algorithm by maxima tracking on Euclidean distance transform. Pattern Recognition, 28(3):331–341, 1995.

    CrossRef  Google Scholar 

  19. H. Talbot and L. Vincent. Euclidean skeletons and conditional bisectors. In Proc. SPIE Visual Communications and Image Processing’92, Boston (MA), volume 1818, pages 862–876, Nov. 1992.

    Google Scholar 

  20. L. Vincent. Efficient computation of various types of skeletons. In Proc. SPIE Symposium Medical Imaging V San Jose, CA, volume 1445, pages 297–311, Feb. 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Hesselink, W.H., Visser, M., Roerdink, J.B. (2005). Euclidean Skeletons of 3D Data Sets in Linear Time by the Integer Medial Axis Transform. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_23

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_23

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics