Abstract
A general algorithm for computing Euclidean skeletons of 3D data sets in linear time is presented. These skeletons are defined in terms of a new concept, called the integer medial axis (IMA) transform. The algorithm is based upon the computation of 3D feature transforms, using a modification of an algorithm for Euclidean distance transforms. The skeletonization algorithm has a time complexity which is linear in the amount of voxels, and can be easily parallelized. The relation of the IMA skeleton to the usual definition in terms of centers of maximal disks is discussed.
Keywords
- Feature transform
- integer medial axis
- 3-D Euclidean skeletonization
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
D. Attali and A. Montanvert. Computing and simplifying 2D and 3D continuous skeletons. Computer Vision and Image Understanding, 67(3):161–273, 1997.
S. Beucher. Digital skeletons in Euclidean and geodesic spaces. Signal Processing, 38:127–141, 1994.
H. Blum. A transformation for extracting new descriptors of shape. In W. Wathen-Dunn, editor, Proc. Symposium Models for the perception of speech and visual form, Boston, November 1964, pages 362–380. MIT Press, Cambridge, MA, 1967.
G. Borgefors, I. Nystrom, and G. S. D. Baja. Computing skeletons in three dimensions. Pattern Recognition, 32(7):1225–1236, 1999.
D. Coeurjolly. d-Dimensional reverse Euclidean distance transformation and Euclidean medial axis extraction in optimal time. In N. et al., editor, DGCI2003, pages 327–337, New York, 2003. Springer. (LNCS 2886).
P. E. Danielsson. Euclidean distance mapping. Comp. Graph. Im. Proc., 14:227–248, 1980.
Y. Ge and J. Fitzpatrick. On the generation of skeletons from discrete Euclidean distance maps. IEEE Trans. Pattern Anal. Machine Intell., 18:1055–1066, 1996.
T. Hirata. A unified linear-time algorithm for computing distance maps. Information Processing Letters, 58:129–133, 1996.
C. M. Ma and M. Sonka. A fully parallel 3d thinning algorithm and its applications. Computer Vision and Image Understanding, 64:420–433, 1996.
P. Maragos and R. W. Schafer. Morphological skeleton representation and coding of binary images. IEEE Trans. Acoust. Speech Signal Proc., ASSP-34:1228–1244, 1986.
C. R. Maurer Jr., R. Qi, and V. Raghavan. A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. IEEE Trans. Pattern Anal. Machine Intell., 25(2):265–270, 2003.
C. R. Maurer Jr., V. Raghavan, and R. Qi. A linear time algorithm for computing the euclidean distance transform in arbitrary dimensions. In Information Processing in Medical Imaging, pages 358–364, 2001.
A. Meijster, J. B. T. M. Roerdink, and W. H. Hesselink. A general algorithm for computing distance transforms in linear time. In J. Goutsias, L. Vincent, and D. S. Bloomberg, editors, Mathematical Morphology and its Applications to Image and Signal Processing, pages 331–340. Kluwer Acad. Publ., Dordrecht, 2000.
F. Meyer. The binary skeleton in three steps. In Proc. IEEE Workshop on Computer Architecture and Image Database Management, IEEE Computer Society Press, pages 477–483, 1985.
J. R. Parker. Algorithms for Image Processing and Computer Vision. John Willey & Sons, 1996.
E. Remy and E. Thiel. Look-up tables for medial axis on squared Euclidean distance transform. In N. et al., editor, DGCI 2003, pages 224–235, New York, 2003. Springer. (LNCS 2886).
J. Serra. Image Analysis and Mathematical Morphology. Academic Press, New York, 1982.
F. Y. Shih and C. C. Pu. A skeletonization algorithm by maxima tracking on Euclidean distance transform. Pattern Recognition, 28(3):331–341, 1995.
H. Talbot and L. Vincent. Euclidean skeletons and conditional bisectors. In Proc. SPIE Visual Communications and Image Processing’92, Boston (MA), volume 1818, pages 862–876, Nov. 1992.
L. Vincent. Efficient computation of various types of skeletons. In Proc. SPIE Symposium Medical Imaging V San Jose, CA, volume 1445, pages 297–311, Feb. 1991.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer
About this paper
Cite this paper
Hesselink, W.H., Visser, M., Roerdink, J.B. (2005). Euclidean Skeletons of 3D Data Sets in Linear Time by the Integer Medial Axis Transform. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_23
Download citation
DOI: https://doi.org/10.1007/1-4020-3443-1_23
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3442-8
Online ISBN: 978-1-4020-3443-5
eBook Packages: Computer ScienceComputer Science (R0)
