Skip to main content

Regular Metric: Definition and Characterization in the Discrete Plane

  • Conference paper
  • 777 Accesses

Part of the Computational Imaging and Vision book series (CIVI,volume 30)

Abstract

We say that a metric space is regular if a straight-line (in the metric space sense) passing through the center of a sphere has at least two diametrically opposite points. The normed vector spaces have this property. Nevertheless, this property might not be satisfied in some metric spaces. In this work, we give a characterization of an integer-valued translation-invariant regular metric defined on the discrete plane, in terms of a symmetric subset B that induces through a recursive Minkowski sum, a chain of subsets that are morphologically closed with respect to B.

Keywords

  • Mathematical Morphology
  • symmetric subset
  • ball
  • lower regularity
  • upper regularity
  • regular metric space
  • integer-valued metric
  • translation-invariant metric
  • triangle inequality
  • recursive Minkowski sum
  • morphological closed subset
  • discrete plane
  • computational geometry
  • discrete geometry
  • digital geometry

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Banon, Gerald J. F. (2000). New insight on digital topology. In: International Symposium on Mathematical Morphology and its Applications to Image and Signal Processing, 5., 26–28 June 2000, Palo Alto, USA. Proceedings… p. 138–148. Published as: INPE-7884-PRE/3724.

    Google Scholar 

  2. Banon, Gerald J. F. and Barrera, Junior (1998). Bases da morfologia matemática para a análise de imagens binárias. 2sd. ed. São José dos Campos: INPE, Posted at: <http://iris.sid.inpe.br:1912/rep/dpi.inpe.br/banon/1998/06.30.17.56>. Access in: 2003, Apr.17.

    Google Scholar 

  3. Banon, Gerald J. F. (2004). Characterization of the integer-valued translation-invariant regular metrics on the discrete plane. São José dos Campos: INPE, Posted at: <http://iris.sid.inpe.br:1912/rep/dpi.inpe.br/banon/2004/03.08.12.12>. Access in: 2003, Apr.17.

    Google Scholar 

  4. Heijmans, Henk J. A. M. (1994). Morphological Image Operators. Boston: Academic.

    Google Scholar 

  5. Kiselman, Christer O. (2002). Digital geometry and mathematical morphology. S.n.t. Lecture Notes, Spring Semester. Posted at: <http://www.math.uu.se/kiselman/dgmm2002.pdf>. Access in 2002, Dec. 18.

    Google Scholar 

  6. Serra, Jean (1982). Image analysis and mathematical morphology. London: Academic.

    Google Scholar 

  7. Rosenfeld, Azriel and Pfaltz, John L. (1968). Digital functions on digital pictures. Pattern Recognition, v. 1, n. 1, p. 33–61.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Banon, G.J.F. (2005). Regular Metric: Definition and Characterization in the Discrete Plane. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_22

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_22

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics