Skip to main content

A New Definition for the Dynamics

  • Conference paper

Part of the Computational Imaging and Vision book series (CIVI,volume 30)

Abstract

We investigate the new definition of the ordered dynamics proposed in [4]. We show that this definition leads to several properties. In particular we give necessary and sufficient conditions which indicate when a transformation preserves the dynamics of the regional maxima. We also establish a link between the dynamics and minimum spanning trees.

Keywords

  • mathematical morphology
  • dynamics
  • graph
  • watershed
  • minimum spanning tree

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Grimaud, Géodésie numérique en morphologie mathématique. Application à la détection automatique de microcalcifications en mammographies numériques, PhD Thesis, Ecole des Mines de Paris, December 1991.

    Google Scholar 

  2. M. Grimaud, “A new measure of contrast: Dynamics”, in SPIE Vol. 1769, Image Algebra and Morphological Processing III, pp. 292–305, 1992.

    Google Scholar 

  3. F. Meyer, “The dynamics of minima and contours”, in ISMM 3rd, R. S. P. Maragos and M. Butt, eds., Computational Imaging and Vision, pp. 329–336, Kluwer, 1996.

    Google Scholar 

  4. G. Bertrand, “On topological watersheds”, Journal of Mathematical Imaging and Vision, 22, pp. 217–230, 2005.

    CrossRef  MathSciNet  Google Scholar 

  5. P.D. Wendt, E.J. Coyle, and N.C. Gallagher, Jr., “Stack filters”, IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-34, pp. 898–911, 1986.

    Google Scholar 

  6. J. Serra, “Connections for sets and functions”, Fundamenta Informaticae, 41, pp. 147–186, 2000.

    Google Scholar 

  7. J. Serra, Image analysis and mathematical morphology, Vol. II, Th. Advances, Academic Press, 1988.

    Google Scholar 

  8. H. Heijmans, “Theoretical aspects of gray-level morphology”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 13, No 6, pp. 568–592, 1991.

    CrossRef  Google Scholar 

  9. M. Couprie and G. Bertrand, “Topological grayscale watershed transform,” in SPIE Vision Geometry V Proceedings, 3168, pp. 136–146, 1997.

    Google Scholar 

  10. G. Bertrand, “Some properties of topological greyscale watersheds”, IS&T/SPIE Symposium on Electronic Imaging, Vision Geometry XII, Vol. 5300, pp. 127–137, 2004.

    Google Scholar 

  11. A. Rosenfeld, “Fuzzy digital topology”, Information and Control 40, pp. 76–87, 1979.

    CrossRef  Google Scholar 

  12. L. Najman, M. Couprie, and G. Bertrand, “Watersheds, extension maps and the emergence paradigm”, Discrete Applied Mathematics, to appear (Internal Report, IGM 2004-04, Institut Gaspard Monge, Université de Marne-La-Vallée, 2004).

    Google Scholar 

  13. M. Gondran and M. Minoux, Graphs and algorithms, John Wiley & Sons, 1984.

    Google Scholar 

  14. M. Couprie, L. Najman, and G. Bertrand, “Quasi-linear algorithms for the topological watershed”, Journal of Mathematical Imaging and Vision, 22, pp. 231–249, 2005.

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Bertrand, G. (2005). A New Definition for the Dynamics. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_18

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_18

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics