Abstract
We investigate the new definition of the ordered dynamics proposed in [4]. We show that this definition leads to several properties. In particular we give necessary and sufficient conditions which indicate when a transformation preserves the dynamics of the regional maxima. We also establish a link between the dynamics and minimum spanning trees.
Keywords
- mathematical morphology
- dynamics
- graph
- watershed
- minimum spanning tree
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
M. Grimaud, Géodésie numérique en morphologie mathématique. Application à la détection automatique de microcalcifications en mammographies numériques, PhD Thesis, Ecole des Mines de Paris, December 1991.
M. Grimaud, “A new measure of contrast: Dynamics”, in SPIE Vol. 1769, Image Algebra and Morphological Processing III, pp. 292–305, 1992.
F. Meyer, “The dynamics of minima and contours”, in ISMM 3rd, R. S. P. Maragos and M. Butt, eds., Computational Imaging and Vision, pp. 329–336, Kluwer, 1996.
G. Bertrand, “On topological watersheds”, Journal of Mathematical Imaging and Vision, 22, pp. 217–230, 2005.
P.D. Wendt, E.J. Coyle, and N.C. Gallagher, Jr., “Stack filters”, IEEE Trans. Acoust., Speech, Signal Processing, Vol. ASSP-34, pp. 898–911, 1986.
J. Serra, “Connections for sets and functions”, Fundamenta Informaticae, 41, pp. 147–186, 2000.
J. Serra, Image analysis and mathematical morphology, Vol. II, Th. Advances, Academic Press, 1988.
H. Heijmans, “Theoretical aspects of gray-level morphology”, IEEE Trans. on Pattern Analysis and Machine Intelligence, Vol. 13, No 6, pp. 568–592, 1991.
M. Couprie and G. Bertrand, “Topological grayscale watershed transform,” in SPIE Vision Geometry V Proceedings, 3168, pp. 136–146, 1997.
G. Bertrand, “Some properties of topological greyscale watersheds”, IS&T/SPIE Symposium on Electronic Imaging, Vision Geometry XII, Vol. 5300, pp. 127–137, 2004.
A. Rosenfeld, “Fuzzy digital topology”, Information and Control 40, pp. 76–87, 1979.
L. Najman, M. Couprie, and G. Bertrand, “Watersheds, extension maps and the emergence paradigm”, Discrete Applied Mathematics, to appear (Internal Report, IGM 2004-04, Institut Gaspard Monge, Université de Marne-La-Vallée, 2004).
M. Gondran and M. Minoux, Graphs and algorithms, John Wiley & Sons, 1984.
M. Couprie, L. Najman, and G. Bertrand, “Quasi-linear algorithms for the topological watershed”, Journal of Mathematical Imaging and Vision, 22, pp. 231–249, 2005.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer
About this paper
Cite this paper
Bertrand, G. (2005). A New Definition for the Dynamics. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_18
Download citation
DOI: https://doi.org/10.1007/1-4020-3443-1_18
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3442-8
Online ISBN: 978-1-4020-3443-5
eBook Packages: Computer ScienceComputer Science (R0)
