Skip to main content

Mosaics and Watersheds

  • Conference paper
  • 741 Accesses

Part of the Computational Imaging and Vision book series (CIVI,volume 30)

Abstract

We investigate the effectiveness of the divide set produced by watershed algorithms. We introduce the mosaic to retrieve the altitude of points along the divide set. A desirable property is that, when two minima are separated by a crest in the original image, they are still separated by a crest of the same altitude in the mosaic. Our main result states that this is the case if and only if the mosaic is obtained through a topological thinning.

Keywords

  • segmentation
  • graph
  • mosaic
  • (topologicall) watershed
  • separation

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. G. Bertrand. On topological watersheds. Journal of Mathematical Imaging and Vision, 22, pp. 217–230, 2005. Special issue on Mathematical Morphology.

    CrossRef  MathSciNet  Google Scholar 

  2. S. Beucher. Segmentation d’images et morphologie mathématique. PhD thesis, Éole des Mines de Paris, France, 1990.

    Google Scholar 

  3. S. Beucher. Watershed, hierarchical segmentation and waterfall algorithm. In J. Serra and P. Soille, editors, Proc. Mathematical Morphology and its Applications to Image Processing, pages 69–76, Fontainebleau, France, 1994. Kluwer.

    Google Scholar 

  4. S. Beucher and C. Lantuéjoul. Use of watersheds in contour detection. In Proc. Int. Workshop on Image Processing, Real-Time Edge and Motion Detection/Estimation, Rennes, France, 1979.

    Google Scholar 

  5. M. Couprie and G. Bertrand. Topological grayscale watershed transform. In SPIE Vision Geometry V Proceedings, volume 3168, pages 136–146, 1997.

    Google Scholar 

  6. M. Couprie, L. Najman, and G. Bertrand. Quasi-linear algorithms for topological watershed. Journal of Mathematical Imaging and Vision, 22, pp. 231–249, 2005. Special issue on Mathematical Morphology.

    MathSciNet  Google Scholar 

  7. F. Meyer. Un algorithme optimal de ligne de partage des eaux. In Actes du 8ème Congrès AFCET, pages 847–859, Lyon-Villeurbanne, France, 1991.

    Google Scholar 

  8. F. Meyer and S. Beucher. Morphological segmentation. Journal of Visual Communication and Image Representation, 1(1):21–46, 1990.

    CrossRef  Google Scholar 

  9. L. Najman and M. Couprie. DGCI’03, volume 2886 of LNCS, chapter Watershed algorithms and contrast preservation, pages 62–71. Springer Verlag, 2003.

    Google Scholar 

  10. L. Najman, M. Couprie, and G. Bertrand. Watersheds, mosaics, and the emergence paradigm. Discrete Applied Mathematics, 2005. In press.

    Google Scholar 

  11. L. Najman and M. Schmitt. Geodesic saliency of watershed contours and hierarchical segmentation. IEEE Trans. on PAMI, 18(12):1163–1173, December 1996.

    Google Scholar 

  12. J.B.T.M. Roerdink and A. Meijster. The watershed transform: Definitions, algorithms and parallelization strategies. Fundamenta Informaticae, 41:187–228, 2000.

    Google Scholar 

  13. A. Rosenfeld. On connectivity properties of grayscale pictures. Pattern Recognition, 16:47–50, 1983.

    CrossRef  Google Scholar 

  14. L. Vincent and P. Soille. Watersheds in digital spaces: An efficient algorithm based on immersion simulations. IEEE Trans. on PAMI, 13(6):583–598, June 1991.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Najman, L., Couprie, M., Bertrand, G. (2005). Mosaics and Watersheds. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_17

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_17

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics