Skip to main content

Morphological Segmentations of Colour Images

  • Conference paper

Part of the Computational Imaging and Vision book series (CIVI,volume 30)

Abstract

Colour images are multivariable functions, and for segmenting them one must go through a reducing step. It is classically obtained by calculating a gradient module, which is then segmented as a gray tone image. An alternative solution is proposed in the paper. It is based on separated segmentations, followed by a final merging into a unique partition. Three problems are treated this way. First, the search for alignments in the 2-D saturation/luminance histograms. It yields partial, but instructive results which suggest a model for the distribution of the light over the space. Second, the combination of luminance dominant and hue dominant regions in images. Third, the synthesis between colour and shape information in human bust tracking.

Keywords

  • colour
  • segmentation
  • saturation
  • norms
  • light propagation
  • connection
  • multivariate analysis

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Angulo, J., Serra, J. (2003) “Color segmentation by ordered mergings,” in Proc. of IEEE Int. Conference on Image Proc. (ICIP’03), Barcelona, Spain, IEEE, Vol. 2, p. 125–128.

    Google Scholar 

  2. Angulo, J. (2003) Morphologie mathématique et indexation d’images couleur Application à la microscopic en biomédecine, Thèse de Doctorat en Morphologie Mathématique, Ecole des Mines de Paris, Dec. 2003, 341 p.

    Google Scholar 

  3. Angulo, J., Serra, J. (2004) “Traitements des images de couleur en représentation luminance/saturation/teinte par norme L1,” Technical Report N-/04/MM, Ecole des Mines de Paris, April 2004, 26 p.

    Google Scholar 

  4. Commission Internationale de l’Eclairage (CIE) (1986) Colorimetry, Second Edition. CIE Publication No. 15.2, Vienna.

    Google Scholar 

  5. Choquet, G. (1966) Topologie, Academic Press, New York.

    Google Scholar 

  6. Demarty, C.-H., Beucher, S. (1998) “Color segmentation algorithm using an HLS transformation,” in Proc. of ISMM ‘98), Kluwer, p. 231–238.

    Google Scholar 

  7. Gomila, C. (2001) Mise en correspondence de partitions en vue du suivi d’objets, Thèse de Doctorat en Morphologie Mathématique, Ecole des Mines de Paris, Sept. 2001, 242 p.

    Google Scholar 

  8. Hanbury, A., Serra, J. (2003) “Colour Image Analysis in 3D-polar coordinates,” in Proc. of DAGM symposium, Vienna, April 2003.

    Google Scholar 

  9. Lambert, P., Carron, T. (1999) “Symbolic fusion of luminance-hue-chroma features for region segmentation,” Pattern Recognition, Vol. 32, p. 1857–1872.

    CrossRef  Google Scholar 

  10. Obein, G., Knoblauch, K., Viénot, F (2002) “Perceptual scaling of the gloss of a one-dimensional series of painted black samples,” Perception, Vol. 31,Suppl., p. 65.

    CrossRef  PubMed  Google Scholar 

  11. Poynton, Ch. (1996) A technical Introduction to Digital Video, Wiley, New York. Chapter 6, “Gamma” is available online at http://www.poyton.com/PDFs/TIDV/Gamma.pdf

    Google Scholar 

  12. Salembier, P., Serra, J. (1995) “Flat Zones Filtering, Connected Operators, and Filters by Reconstruction,” IEEE Transactions on Image Processing, Vol. 4, No. 8, p. 1153–1160.

    CrossRef  Google Scholar 

  13. Serra, J. (2000) “Connectivity for sets and functions,” Fund. Inform., Vol. 41, 147–186.

    Google Scholar 

  14. Serra, J. (2002) “Espaces couleur et traitement d’images,” Technical Report N-34/02/MM, Ecole des Mines de Paris, Oct. 2002, 13 p.

    Google Scholar 

  15. Serra, J. (2004) “A lattice approach to Image segmentation,” To be published by Journal of Mathematical Imaging and Vision, 75 p.

    Google Scholar 

  16. Shafer, S.A. (1985) “Using color to separate reflection components from a color image,” Color Research and Applications, Vol. 10, No. 4, p. 210–218.

    Google Scholar 

  17. Smith, A.R. (1978) “Color gammut transform pairs,” Computer Graphics, Vol. 12, No. 3, p. 12–19.

    Google Scholar 

  18. Tremeau, A., Fernandez-Maloigne, Ch., Bonton, P. (2004) Image numéerique couleur Ed. Dunod, Paris.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Serra, J. (2005). Morphological Segmentations of Colour Images. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_15

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_15

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics