Abstract
A variant of morphological attribute filters is developed, in which the attribute on which filtering is based, is no longer a scalar, as is usual, but a vector. This leads to new granulometries and associated pattern spectra. When the vector-attribute used is a shape descriptor, the resulting granulometries filter an image based on a shape or shape family instead of one or more scalar values.
Keywords
- Mathematical morphology
- connected filters
- multi-scale analysis
- granulometries
- pattern spectra
- vector-attributes
- shape filtering
This is a preview of subscription content, access via your institution.
Buying options
Tax calculation will be finalised at checkout
Purchases are for personal use only
Learn about institutional subscriptionsPreview
Unable to display preview. Download preview PDF.
References
S. Batman and E. R. Dougherty. Size distributions for multivariate morphological granulometries: texture classification and statistical properties. Optical Engineering, 36(5): 1518–1529, May 1997.
E. J. Breen and R. Jones. Attribute openings, thinnings and granulometries. Computer Vision and Image Understanding, 64(3):377–389, 1996.
B. Burgeth, M. Welk, C. Feddern, and J. Weickert. Morphological operations on matrixvalued images. In T. Pajdla and J. Matas, editors, Computer Vision — ECCV 2004, pages 155–167, Berlin, 2004. Springer.
J. Flusser and T. Suk. Construction of complete and independent systems of rotation moment invariants. In N. Petkov and M.A. Westenberg, editors, CAIP 2003: Computer Analysis of Images and Patterns, pages 41–48, Berlin Heidelberg, 2003. Springer-Verlag.
A. Hanbury and J. Serra. Mathematical morphology in the HLS colour space. In 12th British Mach. Vis. Conf., pages 451–460, Manchester, UK, September 2001.
M. K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on Infomation Theory, IT-8:179–187, 1962.
R.A. Peters II. Mathematical morphology for angle-valued images. In Nonlinear Image Processing VIII, volume 3026 of Proceedings of the SPIE, pages 84–94, 1997.
P. Maragos. Pattern spectrum and multiscale shape representation. IEEE Trans. Patt. Anal. Mach. Intell., 11:701–715, 1989.
G. Matheron. Random Sets and Integral Geometry. John Wiley, 1975.
A. Meijster and M. H. F. Wilkinson. Fast computation of morphological area pattern spectra. In Int. Conf. Image Proc. 2001, pages 668–671, 2001.
P. F. M. Nacken. Chamfer metrics, the medical axis and mathematical morphology. Journal Mathematical Imaging and Vision, 6:235–248, 1996.
P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected operators for image and sequence processing. IEEE Transactions on Image Processing, 7:555–570, 1998.
D. M. J. Tax and R. P. W. Duin. Support vector domain description. Pattern Recogn. Lett., 20:1191–1199, 1999.
E. R. Urbach and J. B. T. M. Roerdink, and M. H. F. Wilkinson. Connected rotation-invariant size-shape granulometries. In Proc. 17th Int. Conf. Pat. Rec., volume 1, pages 688–691, 2004.
E. R. Urbach and M. H. F Wilkinson. Shape-only granulometries and grey-scale shape filters. In Proc. ISMM2002, pages 305–314, 2002.
L. Vincent. Granulometries and opening trees. Fundamenta Informaticae, 41:57–90, 2000.
P. Yap, R. Paramesran, and S. Ong. Image analysis by Krawtchouk moments. IEEE Trans. Image Proc., 12(11):1367–1377, November 2003.
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2005 Springer
About this paper
Cite this paper
Urbach, E.R., Boersma, N.J., Wilkinson, M.H. (2005). Vector-Attribute Filters. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_10
Download citation
DOI: https://doi.org/10.1007/1-4020-3443-1_10
Publisher Name: Springer, Dordrecht
Print ISBN: 978-1-4020-3442-8
Online ISBN: 978-1-4020-3443-5
eBook Packages: Computer ScienceComputer Science (R0)
