Skip to main content

Vector-Attribute Filters

  • Conference paper

Part of the Computational Imaging and Vision book series (CIVI,volume 30)

Abstract

A variant of morphological attribute filters is developed, in which the attribute on which filtering is based, is no longer a scalar, as is usual, but a vector. This leads to new granulometries and associated pattern spectra. When the vector-attribute used is a shape descriptor, the resulting granulometries filter an image based on a shape or shape family instead of one or more scalar values.

Keywords

  • Mathematical morphology
  • connected filters
  • multi-scale analysis
  • granulometries
  • pattern spectra
  • vector-attributes
  • shape filtering

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (Canada)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (Canada)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (Canada)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. S. Batman and E. R. Dougherty. Size distributions for multivariate morphological granulometries: texture classification and statistical properties. Optical Engineering, 36(5): 1518–1529, May 1997.

    Google Scholar 

  2. E. J. Breen and R. Jones. Attribute openings, thinnings and granulometries. Computer Vision and Image Understanding, 64(3):377–389, 1996.

    CrossRef  Google Scholar 

  3. B. Burgeth, M. Welk, C. Feddern, and J. Weickert. Morphological operations on matrixvalued images. In T. Pajdla and J. Matas, editors, Computer Vision — ECCV 2004, pages 155–167, Berlin, 2004. Springer.

    Google Scholar 

  4. J. Flusser and T. Suk. Construction of complete and independent systems of rotation moment invariants. In N. Petkov and M.A. Westenberg, editors, CAIP 2003: Computer Analysis of Images and Patterns, pages 41–48, Berlin Heidelberg, 2003. Springer-Verlag.

    Google Scholar 

  5. A. Hanbury and J. Serra. Mathematical morphology in the HLS colour space. In 12th British Mach. Vis. Conf., pages 451–460, Manchester, UK, September 2001.

    Google Scholar 

  6. M. K. Hu. Visual pattern recognition by moment invariants. IRE Transactions on Infomation Theory, IT-8:179–187, 1962.

    Google Scholar 

  7. R.A. Peters II. Mathematical morphology for angle-valued images. In Nonlinear Image Processing VIII, volume 3026 of Proceedings of the SPIE, pages 84–94, 1997.

    Google Scholar 

  8. P. Maragos. Pattern spectrum and multiscale shape representation. IEEE Trans. Patt. Anal. Mach. Intell., 11:701–715, 1989.

    CrossRef  Google Scholar 

  9. G. Matheron. Random Sets and Integral Geometry. John Wiley, 1975.

    Google Scholar 

  10. A. Meijster and M. H. F. Wilkinson. Fast computation of morphological area pattern spectra. In Int. Conf. Image Proc. 2001, pages 668–671, 2001.

    Google Scholar 

  11. P. F. M. Nacken. Chamfer metrics, the medical axis and mathematical morphology. Journal Mathematical Imaging and Vision, 6:235–248, 1996.

    CrossRef  Google Scholar 

  12. P. Salembier, A. Oliveras, and L. Garrido. Anti-extensive connected operators for image and sequence processing. IEEE Transactions on Image Processing, 7:555–570, 1998.

    CrossRef  Google Scholar 

  13. D. M. J. Tax and R. P. W. Duin. Support vector domain description. Pattern Recogn. Lett., 20:1191–1199, 1999.

    CrossRef  Google Scholar 

  14. E. R. Urbach and J. B. T. M. Roerdink, and M. H. F. Wilkinson. Connected rotation-invariant size-shape granulometries. In Proc. 17th Int. Conf. Pat. Rec., volume 1, pages 688–691, 2004.

    CrossRef  Google Scholar 

  15. E. R. Urbach and M. H. F Wilkinson. Shape-only granulometries and grey-scale shape filters. In Proc. ISMM2002, pages 305–314, 2002.

    Google Scholar 

  16. L. Vincent. Granulometries and opening trees. Fundamenta Informaticae, 41:57–90, 2000.

    Google Scholar 

  17. P. Yap, R. Paramesran, and S. Ong. Image analysis by Krawtchouk moments. IEEE Trans. Image Proc., 12(11):1367–1377, November 2003.

    CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Urbach, E.R., Boersma, N.J., Wilkinson, M.H. (2005). Vector-Attribute Filters. In: Ronse, C., Najman, L., Decencière, E. (eds) Mathematical Morphology: 40 Years On. Computational Imaging and Vision, vol 30. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3443-1_10

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3443-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3442-8

  • Online ISBN: 978-1-4020-3443-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics