Skip to main content

An ICA Approach to Unsupervised Change Detection in Multispectral Images

  • Conference paper
Biological and Artificial Intelligence Environments
  • 779 Accesses

Abstract

Detecting regions of change in multiple images of the same scene taken at different times is of widespread interest due to a large number of applications in diverse disciplines, including remote sensing, surveillance, medical diagnosis and treatment, civil infrastructure, and underwater sensing.

The paper proposes a data dependent change detection approach based on textural features extracted by the Independent Component Analysis (ICA) model. The properties of ICA allow to create energy features for computing multispectral and multitemporal difference images to be classified. Our experiments on remote sensing images show that the proposed method can efficiently and effectively classify temporal discontinuities corresponding to changed areas over the observed scenes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bosc, M., Heitz, F., Armspach, J. P., Namer, I., Gounot, D., and Rumbach, L. (2003). Automatic change detection in multimodal serial mri: application to multiple sclerosis lesion evolution. Neuroimage, 20:643–656.

    Article  Google Scholar 

  • Bruzzone, L. and Prieto, D.F. (2002). An adaptive semiparametric and context-based approach to unsupervised change detection in multitemporal remote-sensing images. IEEE Trans. Image Processing, 11:452–466.

    Article  Google Scholar 

  • Ceccarelli, N. and Petrosino, A. Multifeature adaptive classifier for sar image segmentation. Neurocomputing, 17:345–363.

    Google Scholar 

  • Chavez, P.S., Jr. (1989). Radiometric calibration of landsat thematic mapper multispectral images. Photogrammetric Engineering Remote Sensing, 55(9):1285–1294.

    Google Scholar 

  • Collins, J.B. and Woodcock, C.E. (1996). An assessment of several linear change detection techniques for mapping forest mortality using multitemporal landsat tm data. Remote Sensing Environment, 56:66–77.

    Article  Google Scholar 

  • Collins, R., Lipton, A., and Kanade, T. (2000). Introduction to the special section on video surveillance. IEEE Trans. Pattern Anal. Machine Intell., 22(8):745–746.

    Article  Google Scholar 

  • Dumskyj, M.J., Aldington, S.J., Dore, C.J., and Kohner, E. M. (1996). The accurate assessment of changes in retinal vessel diameter using multiple frame electrocardiograph synchronised fundus photography. Current Eye Research, 15(6):632–652.

    Google Scholar 

  • Edgington, D., Dirk, W., Salamy, K., Koch, C., Risi, M., and Sherlock, R. (2003). Automated event detection in underwater video. Proc. MTS/IEEE Oceans 2003 Conference.

    Google Scholar 

  • Fang, C.Y., Chen, S.-W., and Fuh, C.-S. (2003). Automatic change detection of driving environments in a vision-based driver assistance system. IEEE Trans. Neural Networks, 14(3):646–657.

    Article  Google Scholar 

  • Fung, T. and LeDrew, E. (1988). The determination of optimal threshold levels for change detection using various accuracy indices. Photogrammetric Engineering & Remote Sensing, 54(10):1449–1454.

    Google Scholar 

  • Harinen, A., Karhunen, J., and Oja, E. (2001). Independent Component Analysis. John Wiley and Sons, Inc.

    Google Scholar 

  • Huertas, A. and Nevatia, R. (2000). Detecting changes in aerial views of man-made structures. Image and Vision Computing, 18(8):583–596.

    Article  Google Scholar 

  • Hyvarinen, A. and E., Oja (1997). A fast fixed-point algorithm for independent component analysis. Neural Computation, 9:483–492.

    Article  Google Scholar 

  • Jain, A.K. and Farrokhnia, F. (1991). Unsupervised texture segmentation using gabor filters. Pattern Recognition, 24(12):1167–1186.

    Article  Google Scholar 

  • Kan, W.Y., Krogmeier, J.V., and Doerschuk, P.C. (1996). Model-based vehicle tracking from image sequences with an application to road surveillance. Optical Engineering, 35(6):1723–1729.

    Article  Google Scholar 

  • Landis, E., Nagy, E., Keane, D., and Nagy, G. (1999). A technique to measure 3d work-of-fracture of concrete in compression. J. Engineering Mechanics, 126(6):599–605.

    Article  Google Scholar 

  • Lebart, K., Trucco, E., and Lane, D.M. (2000). Real-time automatic sea-floor change detection from video. MTS/IEEE OCEANS 2000, pages 337–343.

    Google Scholar 

  • Lee, T.W. and Lewinksy, M.S. (2002). Unsupervised image classification, segmentation and enhancement using ica mixute models. IEEE Trans. on Image Processing, 11(3):270–279.

    Article  Google Scholar 

  • Lemieux, L., Wieshmann, U., Moran, N., Fish, D., and Shorvon, S. (1998). The detection and significance of subtle changes in mixed-signal brain lesions by serial mri scan matching and spatial normalization. Medical Image Analysis, 2(3):227–242.

    Article  Google Scholar 

  • Nagy, G., Zhang, T., Franklin, W., Landis, E., Nagy, E., and Keane, D. (2001). Volume and surface area distributions of cracks in concrete. Visual Form 2001 (Springer LNCS 2059), pages 759–768.

    Google Scholar 

  • Randen, T. and Husoy, J.H. (1999). Filtering for texture classification: A comparative study. IEEE Transactions on Pattern Analysis and Machine Intelligence, 21(4):291–310.

    Article  Google Scholar 

  • Rey, D., Subsol, G., Delingette, H., and Ayache, N. (2002). Automatic detection and segmentation of evolving processes in 3d medical images: Application to multiple sclerosis. Medical Image Analysis, 6(2):163–179.

    Article  Google Scholar 

  • Singh, A. (1989). Digital change detection techniques using remotely-sensed data. Internat. Journal of Remote Sensing, 10(6):989–1003.

    Article  Google Scholar 

  • Slater, P.N. (1987). Reflectance and radiance based methods for the in-flight absolute calibration of multispectral sensors. Remote Sensing of Environment, 22:11–37.

    Article  Google Scholar 

  • Stauffer, C. and Grimson, W. E. L. (2000). Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Machine Intell., 22(8):747–757.

    Article  Google Scholar 

  • Thirion, J.-P. and Calmon, G. (1999). Deformation analysis to detect and quantify active lesions in three-dimensional medical image sequences. IEEE Transactions on Medical Image Analysis, 18(5):429–441.

    Article  Google Scholar 

  • Turner, M. R. (1986). Texture discrimination by gabor functions. Biol. Cybern., 55:71–82.

    Google Scholar 

  • Whorff, J. and Griffing, L. (1992). A video recording and analysis system used to sample intertidal communities. Journal of Experimental Marine Biology and Ecology, 160:1–12.

    Article  Google Scholar 

  • Wren, C. R., Azarbayejani, A., Darrell, T., and Pentland, A. (1997). Pfinder: Real-time tracking of the human body. IEEE Trans. Pattern Anal. Machine Intell., 19(7):780–785.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Antoniol, G., Ceccarelli, M., Petrillo, P., Petrosino, A. (2005). An ICA Approach to Unsupervised Change Detection in Multispectral Images. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds) Biological and Artificial Intelligence Environments. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3432-6_35

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3432-6_35

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3431-2

  • Online ISBN: 978-1-4020-3432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics