Skip to main content

Abstract

Kernel Methods are algorithms that implicitly perform a nonlinear mapping of the input data to a high dimensional Feature Space. In this paper, we present a novel Kernel Method, Kernel K-Means for clustering problems. Unlike other popular clustering algorithms that yield piecewise linear borders among data, Kernel K-Means allows to get nonlinear separation surfaces in the data. Kernel K-Means compares better with popular clustering algorithms, on a synthetic dataset and two UCI real data benchmarks.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ben-Hur, A., Horn, D., Siegelmann, H.T., and Vapnik, V. (2001). Support vector clustering. Journal of Machine Learning Research, 2:125–137.

    Article  Google Scholar 

  • Bishop, C. (1995). Neural Networks for Pattern Recognition. Cambridge University Press.

    Google Scholar 

  • Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vector Machines. Cambridge University Press.

    Google Scholar 

  • Dempster, A.P., Laird, N.M., and Rubin, D.B. (1977). Maximum likelihood from incomplete data via the em algorithm. Journal Royal Statistical Society, 39(1):1–38.

    MATH  MathSciNet  Google Scholar 

  • Fisher, R.A. (1936). The use of multiple measurements in taxonomic problems. Annals of Eugenics, 7:179–188.

    Google Scholar 

  • Kohonen, T. (1982). Self-organized formation of topologically correct feature maps. Biological Cybernetics, 43:59–69.

    Article  MATH  MathSciNet  Google Scholar 

  • Lloyd, S.P. (1982). An algorithm for vector quantizer design. IEEE Transaction on Communications, 28(1):84–95.

    Google Scholar 

  • Martinetz, T.E. and Schulten, K.J. (1993). Neural-gas network for vector quantization and its application to time-series prediction. IEEE Transaction on Neural Networks, 4(4):558–569.

    Article  Google Scholar 

  • Wolberg, W.H. and Mangasarian, O.L. (1990). Multisurface method of pattern separation for medical diagnosis applied to breast citology. Proceedings of the National Academy of Sciences, USA, 87:9193–9196.

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Camastra, F., Verri, A. (2005). A Novel Kernel Method for Clustering. In: Apolloni, B., Marinaro, M., Tagliaferri, R. (eds) Biological and Artificial Intelligence Environments. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3432-6_29

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3432-6_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3431-2

  • Online ISBN: 978-1-4020-3432-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics