Advertisement

DIQUARKCONDENSATION EFFECTSON HOT QUARK STAR CONFIGURATIONS

  • A. Öztas
  • D. Blaschke
  • S. Fredriksson
  • H. Grigorian
Conference paper
Part of the NATO Science Series II: Mathematics, Physics and Chemistry book series (NAII, volume 197)

Abstract

The equation of state for quark matter is derived for a nonlocal, chiral quark model within the mean field approximation. We investigate the effects of a variation of the form-factors of the interaction on the phase diagram of quark matter. Special emphasis is on the occurrence of a diquark condensate which signals a phase transition to color superconductivity and its effects on the equation of state under the condition of β- equilibrium and charge neutrality. We calculate the quark star configurations by solving the Tolman- Oppenheimer- Volkoff equations and obtain for the transition from a hot, normal quark matter core of a protoneutron star to a cool diquark condensed one a release of binding energy of the order of ΔMc 2 ~ 1053 erg. We find that this energy could not serve as an engine for explosive phenomena since the phase transition is not first order. Contrary to naive expectations the mass defect increases when for a given temperature we neglect the possibility of diquark condensation.

Keywords

Quark Matter Compact Star Mass Defect Quark Star Current Quark Mass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    K. Rajagopal and F. Wilczek, In ∗Shifman, M. (ed.): At the frontier of particle physics, 3 (2000) 2061; [arXiv:hep-ph/0011333.]Google Scholar
  2. [2]
    D. Blaschke, N. K. Glendenning and A. Sedrakian (Eds.), Physics of Neutron Star Interiors, Springer Lect. Notes Phys. 578 (2001).Google Scholar
  3. [3]
    N. K. Glendenning, S. Pei and F. Weber, Phys. Rev. Lett. 79 (1997) 1603 [arXiv:astroph/ 9705235].CrossRefADSGoogle Scholar
  4. [4]
    N. K. Glendenning and F. Weber, in 2, p. 305 [arXiv:astro-ph/0106054].Google Scholar
  5. [5]
    G. S. Poghosyan, H. Grigorian and D. Blaschke, Astrophys. J. 551 (2001) L73 [arXiv:astro-ph/0101002].CrossRefADSGoogle Scholar
  6. [6]
    M. Prakash, J. M. Lattimer, A. W. Steiner and D. Page, Nucl. Phys. A 715835c; [arXiv:astro-ph/0209122].Google Scholar
  7. [7]
    H. Grigorian, D. Blaschke and G. Poghosyan, Nucl. Phys. A 715 (2003) 831c; [arXiv:nuclth/0209068].ADSCrossRefGoogle Scholar
  8. [8]
    S. Fredriksson, in Workshop on Diquarks, Eds. M. Anselmino and E. Predazzi (World Scientific, Singapore, 1989) 22.Google Scholar
  9. [9]
    D. Kastor and J. Traschen, Phys. Rev. D 44 (1991) 3791.CrossRefADSGoogle Scholar
  10. [10]
    J. E. Horvath, O. G. Benvenuto and H. Vucetich, Phys. Rev. D 44 (1991) 3797.CrossRefADSGoogle Scholar
  11. [11]
    J. E. Horvath, J. A. de Freitas Pacheco and J. C. de Araujo, Phys. Rev. D 46 (1992) 4754.CrossRefADSGoogle Scholar
  12. [12]
    P. Sahu, Int. J. Mod. Phys. E2, 647 (1993).ADSGoogle Scholar
  13. [13]
    D. Blaschke, T. Klähn and D. N. Voskresensky, Astrophys. J. 533 (2000) 406; [arXiv:astroph/9908334].CrossRefADSGoogle Scholar
  14. [14]
    D. Page, M. Prakash, J. M. Lattimer and A. Steiner, Phys. Rev. Lett. 85 (2000) 2048; [arXiv:hep-ph/0005094].CrossRefADSGoogle Scholar
  15. [15]
    D. Blaschke, H. Grigorian and D. N. Voskresensky, Astron. Astrophys. 368 (2001) 561; [arXiv:astro-ph/0009120]; H. Grigorian, D. Blaschke and D. N. Voskresensky, in preparation.Google Scholar
  16. [16]
    D. K. Hong, S. D. Hsu and F. Sannino, Phys. Lett. B 516 (2001) 362; [arXiv:hepph/0107017].ADSCrossRefGoogle Scholar
  17. [17]
    R. Ouyed, eConf C010815 (2002) 209.ADSGoogle Scholar
  18. [18]
    A. W. Steiner, S. Reddy and M. Prakash, Phys. Rev. D 66 (2002) 094007; [arXiv:hepph/0205201].CrossRefADSGoogle Scholar
  19. [19]
    F. Neumann, M. Buballa and M. Oertel, Nucl. Phys. A 714 (2003) 481 [arXiv:hepph/0210078].ADSzbMATHCrossRefGoogle Scholar
  20. [20]
    C. Gocke, D. Blaschke, A. Khalatyan and H. Grigorian, arXiv:hep-ph/0104183.Google Scholar
  21. [21]
    G.W. Carter and S. Reddy, Phys. Rev. D 62 (2000) 103002.ADSGoogle Scholar
  22. [22]
    P. Jaikumar and M. Prakash, Phys. Lett. B 516 (2001) 345.ADSGoogle Scholar
  23. [23]
    S. Schmidt, D. Blaschke and Yu. Kalinovsky, Phys. Rev. C 50 (1994) 435.ADSGoogle Scholar
  24. [24]
    J. Berges and K. Rajagopal, Nucl. Phys. B 538 (1999) 215.ADSCrossRefGoogle Scholar
  25. [25]
    P. Bedaque, Nucl. Phys. A 697 (2002) 569.zbMATHADSGoogle Scholar
  26. [26]
    O. Kiriyama, S. Yasui and H. Toki, Int. J. Mod. Phys. E 10 (2002) 501.ADSGoogle Scholar
  27. [27]
    D. Blaschke, S. Fredriksson and A. M. Oztas, eConf C010815 (2002) 167; [arXiv:astroph/0111587].Google Scholar
  28. [28]
    M. Huang, P. F. Zhuang and W. Q. Chao, Phys. Rev. D 67 (2003) 065015; [arXiv:hepph/0207008].ADSGoogle Scholar
  29. [29]
    D. Blaschke, H. Grigorian, G. Poghosyan, C. D. Roberts and S. M. Schmidt, Phys. Lett. B 450 (1999) 207 [arXiv:nucl-th/9801060].ADSGoogle Scholar
  30. [30]
    J.R. Oppenheimer and G. Volkoff, Phys. Rev. 55, (1939) 377.CrossRefADSGoogle Scholar
  31. [31]
    N.K. Glendenning, Compact Stars (Springer, New York & London, 2000).zbMATHGoogle Scholar
  32. [32]
    C. Kettner, F.Weber, M. K. Weigel and N. K. Glendenning, Phys. Rev. D 51 (1995) 1440.ADSGoogle Scholar
  33. [33]
    H. Grigorian, D. Blaschke and D. N. Aguilera, Phys.Rev.C69:065802 (2003).ADSGoogle Scholar
  34. [34]
    D. Blaschke, H. Grigorian, D. N. Aguilera, S. Yasui and H. Toki, in: Hadron Physics, AIP Conference Proceedings 660 (2003) 209; [arXiv:hep-ph/0301087].ADSCrossRefGoogle Scholar

Copyright information

© Springer 2006

Authors and Affiliations

  • A. Öztas
    • 1
  • D. Blaschke
    • 2
  • S. Fredriksson
    • 3
  • H. Grigorian
    • 4
    • 5
  1. 1.Department of PhysicsHacettepe UniversityAnkaraTurkey
  2. 2.Fachbereich PhysikUniversität RostockRostockGermany
  3. 3.Department of PhysicsLuleaa University of TechnologyLuleaaSweden
  4. 4.Fachbereich PhysikUniversität RostockRostockGermany
  5. 5.Department of PhysicsYerevan State UniversityYerevanArmenia

Personalised recommendations