Skip to main content

EFFECTIVE LAGRANGIANS FOR QCD: DUALITY AND EXACT RESULTS

  • Conference paper
Superdense QCD Matter and Compact Stars

Part of the book series: NATO Science Series II: Mathematics, Physics and Chemistry ((NAII,volume 197))

  • 483 Accesses

Abstract

I briefly discuss effective Lagrangians for strong interactions while concentrating on two specific Lagrangians for QCD at large matter density. I then introduce spectral duality in QCD a laMontonen and Olive. The latter is already present in QCD in the hadronic phase. However it becomes transparent at large chemical potential. Finally I show the relevance of having exact non perturbative constraints such as t'Hooft anomaly conditions at zero and nonzero quark chemical potential on the possible phases of strongly interacting matter. An important outcome is that for three massless quarks at any chemical potential the only non trivial solution of the constraints is chiral symmetry breaking. This proves that for three massless flavors at large quark chemical potential CFL is the ground state of matter and is smoothly connected to the ordinary hadronic phase.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Schechter, Phys. Rev. D 21(1980) 3393.

    Google Scholar 

  2. C. Rosenzweig, J. Schechter and G. Trahern, Phys. Rev. D21, 3388 (1980); P. Di Vecchia and G. Veneziano, Nucl. Phys. B171, 253 (1980); E. Witten, Ann. of Phys. 128, 363 (1980); P. Nath and A. Arnowitt, Phys. Rev. D23, 473 (1981); A. Aurilia, Y. Takahashi and D. Townsend, Phys. Lett. 95B, 65 (1980); K. Kawarabayashi and N. Ohta, Nucl. Phys. B175, 477 (1980).

    Google Scholar 

  3. A. A. Migdal and M. A. Shifman, Phys. Lett. B 114, 445 (1982); J. M. Cornwall and A. Soni, Phys. Rev. D 29, 1424 (1984); Phys. Rev. D 32, 764 (1985).

    Google Scholar 

  4. A. Salomone, J. Schechter and T. Tudron, Phys. Rev. D23, 1143 (1981); J. Ellis and J. Lanik, Phys. Lett. 150B, 289 (1985); H. Gomm and J. Schechter, Phys. Lett. 158B, 449 (1985); F. Sannino and J. Schechter, Phys. Rev. D 60, 056004 (1999) [hep-ph/9903359].

    Google Scholar 

  5. G. Veneziano and S. Yankielowicz, Phys. Lett. B 113, 231 (1982).

    ADS  Google Scholar 

  6. F. Sannino and M. Shifman, “Effective Lagrangians for orientifold theories,” Phys.Rev.D69:125004 (2003)[arXiv:hep-th/0309252].

    MathSciNet  ADS  Google Scholar 

  7. A. Armoni, M. Shifman and G. Veneziano, Nucl. Phys. B 667, 170 (2003)[arXiv:hepth/0302163].

    Article  MathSciNet  ADS  Google Scholar 

  8. R. Marotta, F. Nicodemi, R. Pettorino, F. Pezzella and F. Sannino, JHEP 0209, 010 (2002)[arXiv:hep-th/0208153].

    Article  MathSciNet  ADS  Google Scholar 

  9. R. Marotta and F. Sannino, Phys. Lett. B 545, 162 (2002)[arXiv:hep-th/0207163].

    MathSciNet  ADS  Google Scholar 

  10. M. Harada, F. Sannino and J. Schechter, “Large N(c) and chiral dynamics,” Phys.Rev.D69:034005 (2003)[arXiv:hep-ph/0309206].

    ADS  Google Scholar 

  11. B. Svetitsky and L. G. Yaffe, Nucl. Phys. B 210, 423 (1982).

    Article  ADS  Google Scholar 

  12. F. Sannino, Phys. Rev. D 66, 034013 (2002)[arXiv:hep-ph/0204174].

    ADS  Google Scholar 

  13. A. Mocsy, F. Sannino and K. Tuominen, Phys. Rev. Lett. 91, 092004 (2003)[arXiv:hepph/0301229].

    Article  ADS  Google Scholar 

  14. A. Mocsy, F. Sannino and K. Tuominen, “Induced universal properties and deconfinement,” JHEP 0403:044 (2003)[arXiv:hep-ph/0306069].

    ADS  Google Scholar 

  15. A. Mocsy, F. Sannino and K. Tuominen, “Confinement versus chiral symmetry,” Phys.Rev.Lett.92:182302 (2003)[arXiv:hep-ph/0308135].

    Article  ADS  Google Scholar 

  16. B. C. Barrois, Nucl. Phys. B129, 390 (1977).

    Article  ADS  Google Scholar 

  17. F. Barrois, Nonperturbative effects in dense quark matter, Ph.D. thesis, Caltech, UMI 79-04847-mc (microfiche).

    Google Scholar 

  18. D. Bailin and A. Love, Phys. Rept. 107, 325 (1984).

    Article  ADS  Google Scholar 

  19. M. Alford, K. Rajagopal and F. Wilczek, Phys. Lett. B422, 247 (1998)[hepph/9711395].

    ADS  Google Scholar 

  20. R. Rapp, T. Schäfer, E. V. Shuryak and M. Velkovsky, Phys. Rev. Lett. 81, 53 (1998)[hep-ph/9711396].

    Article  ADS  Google Scholar 

  21. D. K. Hong, S. D. Hsu and F. Sannino, Phys. Lett. B 516, 362 (2001),hep-ph/0107017.

    ADS  Google Scholar 

  22. R. Ouyed and F. Sannino, Astron. Astrophys. 387, 725 (2002)[arXiv:astroph/0103022].

    Article  ADS  Google Scholar 

  23. D. Blaschke, S. Fredriksson, H. Grigorian and A. M. Oztas, Nucl.Phys.A736:203–219 (2003)[arXiv:nucl-th/0301002].

    ADS  Google Scholar 

  24. A. D. Jackson and F. Sannino, Phys. Lett. B 578, 133 (2004)[arXiv:hep-ph/0308182].

    ADS  Google Scholar 

  25. R. Casalbuoni, R. Gatto and G. Nardulli, Phys. Lett. B 498, 179 (2001) [Erratum-ibid. B 517, 483 (2001)] [arXiv:hep-ph/0010321].

    Google Scholar 

  26. M. Rho, E. V. Shuryak, A. Wirzba and I. Zahed, Nucl. Phys. A 676, 273 (2000)[arXiv:hep-ph/0001104].

    ADS  Google Scholar 

  27. D. K. Hong, M. Rho and I. Zahed, Phys. Lett. B 468, 261 (1999)[arXiv:hepph/9906551].

    ADS  Google Scholar 

  28. R. Casalbuoni and R. Gatto, Phys. Lett. B464, 11 (1999); Phys. Lett. B469, 213 (1999).

    Google Scholar 

  29. C. Montonen and D. I. Olive, Phys. Lett. B 72, 117 (1977).

    ADS  Google Scholar 

  30. T. Schafer and F. Wilczek, Phys. Rev. Lett. 82, 3956 (1999)[arXiv:hep-ph/9811473].

    Article  ADS  Google Scholar 

  31. See T. Schafer, “Quark matter,” arXiv:hep-ph/0304281 and references therein for a concise review on the μdependence of (μ).

    Google Scholar 

  32. F. Sannino, Phys. Lett. B 480, 280 (2000)[arXiv:hep-ph/0002277].

    ADS  Google Scholar 

  33. S. D. Hsu, F. Sannino and M. Schwetz, Mod. Phys. Lett. A 16, 1871 (2001)[arXiv:hepph/0006059].

    ADS  Google Scholar 

  34. F. Sannino, “Anomaly matching and low energy theories at high matter density” arXiv:hep-ph/0301035. Proceedings for the review talk at the Electroweak and Strong Matter conference, Heidelberg 2002.

    Google Scholar 

  35. J. Wess and B. Zumino, Phys. Lett. B37, 95 (1971).

    MathSciNet  ADS  Google Scholar 

  36. R. Casalbuoni, Z. Duan and F. Sannino, Phys. Rev. D 63, 114026 (2001).

    ADS  Google Scholar 

  37. F. Sannino and J. Schechter, Phys. Rev. D 52, 96 (1995). M. Harada, F. Sannino and J. Schechter, Phys. Rev. D 54, 1991 (1996);ibid Phys. Rev. Lett. 78, 1603 (1997).

    Google Scholar 

  38. C. Vogt, R. Rapp and R. Ouyed, “Photon emission from dense quark matter,” Nucl. Phys. A735, 543 (2003).

    ADS  Google Scholar 

  39. M. Bando, T. Kugo and K. Yamawaki, Phys. Rept. 164, 217 (1988).

    Article  MathSciNet  ADS  Google Scholar 

  40. See J. Schechter and H. Weigel, in ∗Mitra, A.N. (ed.): Quantum field theory∗ 337–369. [arXiv:hep-ph/9907554] for a recent review on the subject and references therein.

    Google Scholar 

  41. C. Manuel and M. H. Tytgat, Phys. Lett. B 501, 200 (2001).

    ADS  Google Scholar 

  42. D. K. Hong, S. T. Hong and Y. J. Park, Phys. Lett. B 499, 125 (2001).

    ADS  Google Scholar 

  43. R. Casalbuoni, Z. Duan and F. Sannino, Phys. Rev. D 62(2000) 094004.

    ADS  Google Scholar 

  44. R. Ouyed and F. Sannino, Phys. Lett. B 511, 66 (2001).

    ADS  Google Scholar 

  45. See M. Alford, “Dense quark matter in nature,” Prog. Theor. Phys. Suppl. 153, 1 (2003), and references therein.

    Google Scholar 

  46. D. H. Rischke, D. T. Son and M. A. Stephanov, Phys. Rev. Lett. 87, 062001 (2001).

    Article  ADS  Google Scholar 

  47. F. Sannino, N. Marchal and W. Schafer, Phys. Rev. D 66, 016007 (2002).

    ADS  Google Scholar 

  48. H.B. Nielsen and S. Chadha, Nucl. Phys. B105, 445 (1976).

    Article  ADS  Google Scholar 

  49. D. K. Hong and S. D. H. Hsu, Phys. Rev. D 68, 034011 (2003).

    ADS  Google Scholar 

  50. J. Preskill and S. Weinberg, Phys. Rev. D 24, 1059 (1981).

    ADS  Google Scholar 

  51. F. Sannino, Phys. Rev. D 67, 054006 (2003). F. Sannino and W. Schäfer, Phys. Lett. B 527, 142 (2002). F. Sannino and W. Schäfer, hep-ph/0204353. J. T. Lenaghan, F. Sannino and K. Splittorff, Phys. Rev. D 65, 054002 (2002).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer

About this paper

Cite this paper

Sannino, F. (2006). EFFECTIVE LAGRANGIANS FOR QCD: DUALITY AND EXACT RESULTS. In: Blaschke, D., Sedrakian, D. (eds) Superdense QCD Matter and Compact Stars. NATO Science Series II: Mathematics, Physics and Chemistry, vol 197. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3430-X_09

Download citation

Publish with us

Policies and ethics