Skip to main content

The Epigenetic Influence of the Tumor Microenvironment on Melanoma Plasticity

  • Chapter
Book cover Integration/Interaction of Oncologic Growth

Part of the book series: Cancer Growth and Progression ((CAGP,volume 15))

  • 523 Accesses

Abstract

Melanoma represents a growing public health burden worldwide, and like most other cancers, is a disease of the tumor-host microenvironment. An innovative cellular and molecular analysis has been used to study the epigenetic induction of a transdifferentiated phenotype in poorly aggressive melanoma cells exposed to the microenvironment of aggressive melanoma cells, including the acquisition of a plastic and invasive phenotype. These findings offer a unique perspective of the inductive properties associated with an aggressive melanoma microenvironment that might provide new insights into the regulation of tumor cell plasticity and differentiation, as well as mechanisms that could be targeted for novel therapeutic strategies. A dynamic, complex relationship exists between tumor cells and their microenvironment, which plays a pivotal role in cancer progression, yet remains poorly understood. Particularly perplexing is the revelation that aggressive melanoma cells express genes associated with multiple cellular phenotypes, in addition to their ability to form vasculogenic-like networks in three-dimensional (3-D) matrix -- vasculogenic mimicry. Key to identifying the molecular mechanisms underlying vasculogenic mimicry and tumor cell transdifferentiation is understanding the unique role of the tumor microenvironment in this process. This chapter will review the epigenetic effect of the microenvironment of aggressive melanoma cells. The data reveal profound changes in the global gene expression in poorly aggressive melanoma cells exposed to 3-D matrices preconditioned by aggressive melanoma cells, including the acquisition of a vasculogenic cell phenotype, upregulation of ECM remodeling genes, and increased migratory/invasive potential -- indicative of microenvironment-induced transdifferentiation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Wingo, P.A., Ries, L.A., Giovino, G.A., Miller, D.S., Rosenberg, H.M., Shopland, D.R., Thun, M.J., and Edwards, B.K., 1999, Annual report to the nation on the status of cancer, 1973–1996, with a special section on lung cancer and tobacco smoking. J Natl Cancer Inst, 91:675–690.

    Article  PubMed  Google Scholar 

  2. Houghton, A.N., and Polsky, D., 2002, Focus on melanoma. Cancer Cell, 2:275–278.

    Article  Google Scholar 

  3. Greenlee, R.T., Murray, T., Bolden, S., and Wingo, P.A., 2000, Cancer statistics, 2000. CA Cancer J Clin, 50:7–33.

    PubMed  Google Scholar 

  4. Rigel, D.S., and Carucci, J.A., 2000, Malignant melanoma: Prevention, early detection, and treatment in the 21st century. CA Cancer J Clin, 50:215–236.

    PubMed  Google Scholar 

  5. Chin, L., Merlino, G., and DePinho, R.A., 1998, Malignant melanoma: modern black plague and genetic black box. Genes Dev, 12(22):3467–3481.

    PubMed  Google Scholar 

  6. Zimmerman, L., and McClean, I., 1984, Do growth and onset of symptoms of uveal melanoma indicate subclinical metastasis?. Ophthalmology, 92:685–691.

    Google Scholar 

  7. Bittner, M., Meltzer, P., Chen, Y., Jiang, Y., Seftor, E., Hendrix, M., Radmacher, M., Simon, R., Yakhini, Z., Ben-Dor, A., et al., 2000, Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature, 406:536–540.

    Article  Google Scholar 

  8. Seftor, E.A., Meltzer, P.S., Kirschmann, D.A., Pe'er, J., Maniotis, A.J., Trent, J.M., Folberg, R., and Hendrix, M.J.C., 2002, Molecular determinants of human uveal melanoma invasion and metastasis. Clin Exp Metastas, 19:233–246.

    Article  Google Scholar 

  9. Tschentscher, F., Husing, J., Holter, T., Kruse, E., Dresen, I.G., Jockel, K.-H., Anastassiour, G., Schilling, H., Bornfeld, N., Horsthemke. B., et al., 2003, Tumor classification based on gene expression profiling shows that uveal melanoma with and without monosomy 3 represent two distinct entities. Cancer Res, 63:2578–2584.

    PubMed  Google Scholar 

  10. Kim, C.J., Reintgen, D.S., and Yeatman, T.J., 2002, The promise of microarray technology in melanoma care. Cancer Control, 9(1):49–53.

    PubMed  Google Scholar 

  11. Carr, K.M., Bittner, M., and Trent, J.M., 2003, Gene-expression profiling in human cutaneous melanoma. Oncogene, 22:3076–3080.

    Article  Google Scholar 

  12. Hendrix, M.J.C., Seftor E.A., Hess, A.R., and Seftor, R.E.B., 2003, Molecular plasticity of human melanoma cells. Oncogene, 22:3070–3075.

    Article  PubMed  Google Scholar 

  13. Seftor, E.A., Meltzer, P.S., Schatteman, G.C., Gruman, L.M., Hess, A.R., Kirschmann, D.A., Seftor, R.E.B., and Hendrix, M.J.C., 2002, Expression of multiple molecular phenotypes by aggressive melanoma tumor cells: role in vasculogenic mimicry. Crit Rev Oncology Hematol, 44:17–27.

    Article  Google Scholar 

  14. Maniotis, A.J., Folberg, R., Hess, A., Seftor, E.A., Gardner, L.M.G., Pe-er, J., Trent, J.M., Meltzer, P.S., and Hendrix, M.J.C.. 1999, Vascular channel formation by human melanoma cells in vivo and in vitro. Am J Pathol, 155:739–752.

    PubMed  Google Scholar 

  15. Makitie, T., Summanen, P., Tarkkanen, A., and Kivela, T., 1999, Microvascular loops and networks as prognostic indicators in choroidal and ciliary body melanomas. J Natl Cancer Inst, 91:359–367.

    Article  PubMed  Google Scholar 

  16. Thies, A., Mangold, U., Moll, I., and Schumacher U., 2001, PAS-positive loops and networks as a prognostic indicator in cutaneous malignant melanoma. J Pathol, 195:537–542.

    Article  PubMed  Google Scholar 

  17. Warso, M.A., Maniotis, A.J., Chen, X., Majumdar, D., Patel, M.K., Shikaitis, A., Das Gupta, T.K., and Folberg, R., 2001, Prognostic significance of periodic acid-Schiff-positive patterns in primary cutaneous melanoma. Clin Cancer Res, 7:473–477.

    PubMed  Google Scholar 

  18. Shirakawa, K., Kobayashi, H., Heike, Y., Kawamoto, S., Brechbiel, M.W., Kasumi, F., Iwanaga, T., Konishi, F., Terada, M., and Wakasugi, H., 2002, Hemodynamics in vasculogenic mimicry and angiogenesis of inflammatory breast cancer xenografts. Cancer Res, 62:560–566.

    PubMed  Google Scholar 

  19. Maniotis, A.J., Chen, X., Garcia, C., DeChristopher, P.J., Wu, D., Pe'er, J., and Folberg, R., 2002, Control of melanoma morphogenesis endothelial survival, and perfusion by extracellular matrix. Lab Invest, 82:1031–1043.

    PubMed  Google Scholar 

  20. Ruf, W., Seftor, E.A., Petrovan, R., Weiss, R.M., Gruman, L.M., Margaryan, N.V., Seftor, R.E.B., Miyagi, Y., and Hendrix, M.J.C., 2003, Differential role of tissue factor pathway inhibitor-1 and 2 (TFPI-1 and 2) in melanoma vasculogenic mimicry. Cancer Res, 63:5381–5389.

    PubMed  Google Scholar 

  21. Clarijs, R., Otte-Holler, I., Ruiter, D.J., and de Waal, R.M.W., 2002, Presence of a fluid-conducting meshwork in xenografted cutaneous and primary human uveal melanoma. Inv Ophthalmol Vis Sci, 43:912–918.

    Google Scholar 

  22. Ryback, S.M., Sanovich, E., Hollingshead, M.G., Borgel, S.D., Newton, D.L., Melillo, G., Kong, D., Kaur, G., and Sausville, E.A., 2003, “Vasocrine” formation of tumor cell-lined vascular spaces: Implications for rationale design of antiangiogenic therapies. Cancer Res, 63:2812–2819.

    PubMed  Google Scholar 

  23. Hendrix, M.J.C., Seftor, E.A., Seftor, R.E.B., Gardner, L.M., Boldt, H.C., Meyer, M., Pe'er, J., and Folberg, R., 1998, Biologic determinants of uveal melanoma metastatic phenotype: Role of intermediate filaments as predictive markers. Lab Investig, 78(2):153–163.

    PubMed  Google Scholar 

  24. Liotta, L.A., and Kohn, E.C., 2001, The microenvironment of the tumour-host interface. Nature, 411:375–379.

    Article  PubMed  Google Scholar 

  25. Bissell, M.J., and Radisky, D., 2001, Putting tumours in context. Nature Rev Cancer, 1:46–54.

    Article  Google Scholar 

  26. Egeblad, M., and Werb, Z., 2002, New functions for the matrix metalloproteinases in cancer progression. Nature Rev Cancer, 2:161–174.

    Article  Google Scholar 

  27. Seftor, R.E.B., Seftor, E.A., Kirschmann, D.A., and Hendrix, M.J.C., 2002, Targeting the tumor microenvironment with chemically modified tetracyclines: inhibition of laminin 5 γ2 chain promigratory fragments and vasculogenic mimicry. Mol Cancer Therapeut 2002, 1:1173–1179.

    Google Scholar 

  28. Takeuchi, H., Kuo, C., Morton, D.L., Wang, H.-J., and Hoon, D.S.B., 2003, Expression of differentiation melanoma-associated antigen genes is associated with favorable disease outcome in advanced-stage melanomas. Cancer Res, 63:441–448.

    PubMed  Google Scholar 

  29. Sheffield, M.V., Yee, H., Dorvault, C.C., Weilbaecher, K.N., Eltoum, I.A., Siegal, G.P., Fisher, D.E., and Chhieng, D.C., 2002, Comparison of five antibodies as markers in the diagnosis of melanoma in cytologic preparations. Am J Pathol, 118(6):930–936.

    Article  Google Scholar 

  30. Du, J., Miller, A.J., Widlund, H.R., Horstmann, M.A., Ramaswamy, S., and Fisher, D.E., MLANA/MART1 and SILV/PMEL17/GP100 are transcriptionally regulated by MITF in melanocytes and melanoma. Am J Pathol, 163(1):333–343.

    Google Scholar 

  31. Shih, I.-M., Speicher, D., Hsu, M.-Y., Levine, E., and Herlyn, M., 1997, Melanoma cell-cell interactions are mediated through heterophilic Mel-CAM/ligand adhesion. Cancer Res, 57:3835–3840.

    PubMed  Google Scholar 

  32. 2002, Assembly of the Vasculature and Its Regulation. Tomanek, R.J. ed, Birkhauser, Boston.

    Google Scholar 

  33. Risau, W., 1997, Mechanisms of angiogenesis. Nature, 386:671–674.

    Article  PubMed  Google Scholar 

  34. Carmeliet, P., 2000, Mechanisms of angiogenesis and arteriogenesis. Nature Med, 6:389–395.

    Article  PubMed  Google Scholar 

  35. Hynes, R.O., Bader, B.L., and Hodivala-Diike, K., 1999, Integrins in vascular development. Braz J Med Biol Res, 32:501–510.

    Article  PubMed  Google Scholar 

  36. Hess, A.R., Seftor, E.A., Gardner, L.M.G., Carles-Kinch, K., Schneider, G.B., Seftor, R.E.B., Kinch, M.S., and Hendrix, M.J.C., 2001, Molecular regulation of tumor cell vasculogenic mimicry by tyrosine phosphorylation: role of epithelial cell kinase (Eck/EphA2). Cancer Res, 61:3250–3255.

    PubMed  Google Scholar 

  37. Look, A.T., Ashmun, R.A., Shapiro, L.H., and Peiper, S.C., 1990, Human myeloid plasma membrane glycoprotein CD13 (gp150) is identical to aminopeptidase. J Clin Invest, 83:1299–1307.

    Google Scholar 

  38. Ashmun, R.A., and Look, A.T., 1990, Metalloprotease activity of CD13/aminopeptidase N on the surface of human myeloid cells. Blood, 75:462–469.

    PubMed  Google Scholar 

  39. Bhagwat, S.V., Petrovic, N., Okamoto, Y., and Shapiro, L.H., 2003, The angiogenic regulator CD13/APN is a transcriptional target of Ras signaling pathways in endothelial morphogenesis. Blood, 101(5):1818–1826.

    PubMed  Google Scholar 

  40. Pasqualini, R., Koivunen, E., Kain, R., Lahdenranta, J., Sakamoto, M., Stryhn, A., Ashmun, R.A., Shapiro, L.H., Arap, W., and Ruoslahti, E., 2000, Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res, 60:722–727.

    PubMed  Google Scholar 

  41. Russell, L., and Forsdyke, D.R., 1991, A human putative lymphocyte G0/G1 switch gene containing a CpG-rich island encodes a small basic protein with the potential to be phosphorylated DNA. Cell Biol, 10(8):581–591.

    Google Scholar 

  42. Bachner, D., Ahrens, M., Schroder, D., Hoffmann, A., Lauber J., Betat, N., Steinert, P., Flohe, L., and Gross, G., 1998, Bmp-2 downstream targets in mesenchymal development identified by subtractive cloning from recombinant mesenchymal progenitors (C3H10T1/2). Dev Dyn, 213(4):398–411.

    Article  PubMed  Google Scholar 

  43. Chen, Y., Medvedev, A., Ruzanov, P., Marvin, K.W., and Jetten, A.M., 1997, cDNA cloning, genomic structure, and chromosome mapping of the human epithelial membrane protein CL-20 gene (EMP1), a member of the PMP22 family. Genomics, 41(1):40–48.

    Article  PubMed  Google Scholar 

  44. Ben-Porath, I., Kozak, C.A., and Benvenisty, N., 1998, Chromosomal mapping of Tmp (Emp1), Xmp (Emp2), and Ymp (Emp3), genes encoding membrane proteins related to Pmp22. Genomics, 49:443–447.

    Article  PubMed  Google Scholar 

  45. Wulf, P., and Suter, U., 1999, Embryonic expression of epithelial membrane protein 1 in early neurons. Brain Res Dev Brain Res, 116(2):169–180.

    Article  PubMed  Google Scholar 

  46. Hendrix, M.J.C., Seftor, E.A., Chu, Y.-W., Seftor, R.E.B., Nagle, R.B., McDaniel, K.M., Leong. S.P.L. Yohem, K.H., Leibovitz. A,M,, Meyskens. F.L., Jr, et al., 1992, Coexpression of vimentin and keratins by human melanoma tumor cells: correlations with invasive and metastatic potential. J Natl Cancer Inst, 84:165–174.

    PubMed  Google Scholar 

  47. Miettinen, M., and Fransella, K., 1989, Immunohistochemical spectrum of malignant melanoma: the common presence of keratins. Lab Invest, 61:623–628.

    PubMed  Google Scholar 

  48. Zarbo, R.J., Gown, A.M., Nagle, R.B., Visscher, D.W., and Crissman, J.D., 1990, Anomalous cytokeratin expression in malignant melanoma: one-and two-dimensional western blot analysis and immunohistochemical survey of 100 melanomas. Mod Pathol, 3:494–501.

    PubMed  Google Scholar 

  49. Hendrix, M.J.C., Seftor, R.E.B., Seftor, E.A., Gruman, L.M., Lee, L.M.L., Nickoloff, B.J., Miele, L., Sheriff, D.D., and Schatteman, G.C., 2002, Transendothelial function of human metastatic melanoma cells: role of the microenvironment in cell-fate determination. Cancer Res, 62:665–668.

    PubMed  Google Scholar 

  50. Stocum, D.L., 2002, A tail of transdifferentiation. Science, 298:1901–1903.

    Article  PubMed  Google Scholar 

  51. Blau, H.M., 2002 A twist of fate. Nature, 419:437.

    Article  PubMed  Google Scholar 

  52. Echeverri, K., and Tanaka, E.M., 2002, Ectoderm to mesoderm lineage switching during axolotl tail regeneration. Science, 298:1993–1996.

    Article  PubMed  Google Scholar 

  53. Klausner, R.D., 2002, The fabric of cancer cell biology-Weaving together the strands. Cancer Cell, 1:3–10.

    Article  PubMed  Google Scholar 

  54. 1991, Cell Biology of Extracellular Matrix, 2nd edition. Hay, E.D., ed, Plenum Press, New York.

    Google Scholar 

  55. Boudreau, N., and Bissell, M.J., 1998, Extracellular matrix signaling: integration of form and function in normal and malignant cells. Curr Opin Cell Biol, 10(5):640–646.

    Article  PubMed  Google Scholar 

  56. Van Kempen, L.C.L., Rhee, J.-S., Dehne, K., Lee, J., Edwards, D.R., and Coussens, L.M., 2002, Epithelial carcinogenesis: dynamic interplay between neoplastic cells and their microenvironment. Differentiation, 70:610–623.

    Article  PubMed  Google Scholar 

  57. Chambers, A.F., and Matrisian, L.M., 1997, Changing views of the role of matrix metalloproteinases in metastasis. J Natl Cancer Inst, 89(17):1260–1270.

    Article  PubMed  Google Scholar 

  58. Sottile, J., and Hocking, D.C., 2002, Fibronectin polymerization regulates the composition and stability of extracellular matrix fibrils and cell-matrix adhesions. Mol Biol Cell, 13:3546–3559.

    Article  Google Scholar 

  59. Clark, E.A., Golub, T.R., Lander, E.S., and Hynes, R.O., 2000, Genomic analysis of metastasis reveals an essential role for RhoC. Nature, 406:532–535.

    Article  PubMed  Google Scholar 

  60. Ruoslahti, E., 1999, Fibronectin and its integrin receptors in cancer. Adv Cancer Res, 76:1–20.

    PubMed  Google Scholar 

  61. Tremble, P.M., Damsky, and C.H., Werb, Z., 1992, Fibronectin fragments, but not intact fibronectin, signalling through the fibronectin receptor induce metalloproteinase gene expression in fibroblasts. Matrix Suppl, 1:212–214.

    PubMed  Google Scholar 

  62. Montgomery, A.M., De Clerck, Y.A., Langley, K.E., Reisfeld, R.A., and Mueller, B.M., 1993, Melanoma-mediated dissolution of extracellular matrix: contribution of urokinase-dependent and metalloproteinase-dependent proteolytic pathways. Cancer Res, 53(3):693–700.

    PubMed  Google Scholar 

  63. Kirschmann, D.A., Seftor, E.A., Fong S.F.T., Nieva, D.R.C., Sullivan, C.M., Edwards, E.M., Sommer, P., Csiszar, K., and Hendrix, M.J.C., 2002, A molecular role for lysyl oxidase in breast cancer invasion. Cancer Res, 62:4478–4483.

    PubMed  Google Scholar 

  64. Akiri, G., Sabo, E., Dafni, H., Vadasc, A., Kartvelishvily, T., Gan, N., Kessler O., Cohen, T., Resnick, M., Meeman, M., and Neufeld, G., 2003, Lysyl oxidase-related protein-1 promotes tumor fibrosis and tumor progression in vivo. Cancer Res, 63(7):1657–1666.

    PubMed  Google Scholar 

  65. Seiki, M., 2002, The cell surface: the stage for matrix metalloproteinase regulation of migration. Curr Opin Cell Biol, 14:624–632.

    Article  PubMed  Google Scholar 

  66. Hotary, K., Allen, E., Punturieri, A., Yana, I., and Weiss, S.J., 2000, Regulation of cell invasion and morphogenesis in a three-dimensional type collagen matrix by membrane-type matrix metalloproteinases 1, 2, and 3 J. Cell Biol, 149(6):1309–1323.

    Article  PubMed  Google Scholar 

  67. Aimes, R.T., and Quigley, J.P., 1995, Matrix metalloproteinase-2 is an interstitial collagenase. J Biol Chem, 270:5872–5876.

    Article  Google Scholar 

  68. Seftor, R.E.B., Seftor, E.A., and Hendrix, M.J.C., 1999, Molecular role(s) for integrins in human melanoma invasion. Cancer Metast Rev, 18:359–375.

    Article  Google Scholar 

  69. Seftor, R.E.B., Seftor, E.A., Koshikawa, N., Meltzer, P.S., Gardner, L.M.G., Bilban, M., Stetler-Stevenson, W.G., Quaranta, V., and Hendrix, M.J.C., 2001, Cooperative interactions of laminin 5γ2 chain, matrix metalloproteinase-2, and membrane type-1 matrix/metalloproteinase are required for mimicry of embryonic vasculogenesis by aggressive melanoma. Cancer Res, 61:6322–6327.

    PubMed  Google Scholar 

  70. Malinda, K.M., and Kleinman, H.K., 1996, The laminins. Int J Biochem Cell Biol, 28:957–959.

    Article  PubMed  Google Scholar 

  71. Colagnato, H., and Yurchenco, P.D., 2000, Form and function: the laminin family of heterotrimers. Dev Dynamics, 218:213–234.

    Article  Google Scholar 

  72. Kalluri, R., 2003, Basement membranes: structure, assembly and role in tumour angiogenesis. Nature Rev Cancer, 3:422–433.

    Article  Google Scholar 

  73. Malinda, K.M., Nomizu, M., Chung, M., Delgado, M., Kuratomi, Y., Yamada, Y., Kleinman, H.K., and Ponce, M.L., 1999, Identification of laminin α1 and β1 chain peptides active for endothelial cell adhesion, tube formation, and aortic sprouting. FASEB J, 13:53–62.

    PubMed  Google Scholar 

  74. Koshikawa, N., Giannelli, G., Cirulli, V., Miyazaki, K., and Quaranta, V., 2000, Role of cell surface metalloprotease MT1-MMP in epithelial cell migration over laminin-5. J Cell Biol, 148:615–624.

    Article  PubMed  Google Scholar 

  75. Giannelli, G., Falk-Marzillier, J., Schiraldi, O., Stetler-Stevenson, W.G., and Quaranta, V., 1997, Induction of cell migration by matrix metalloprotease-2 cleavage of laminin-5. Science, 277:225–228.

    Article  PubMed  Google Scholar 

  76. Hynes, R.O., 2002, Integrins: bidirectional, allosteric signaling machines. Cell, 110:673–667.

    PubMed  Google Scholar 

  77. Giordano, F.J., and Johnson, R.S., 2001, Angiogenesis: the role of the microenvironment in flipping the switch. Curr Opin Genetics Dev, 11:35–40.

    Article  Google Scholar 

  78. Bergers, G., Brekken, R., McMahon, G., Vu, T.H., Itoh, T., Tamaki, K., Tanzawa, K., Thorpe, P., Itohara, S., Werb, Z., and Hanahan, D., 2000, Matrix metalloproteinase-9 triggers and angiogenic switch during carcinogenesis. Nature Cell Biol, 2(10):737–744.

    Article  PubMed  Google Scholar 

  79. Hendrix, M.J.C., Seftor, E.A., Seftor, R.E.B., Kirschmann, D.A., Gardner, L.M., Boldt, H.C., Meyer, M., Pe'er, J., and Folberg, R., 1998, Regulation of uveal melanoma interconverted phenotype by hepatocyte growth factor/scatter factor. Am J Pathol, 152:855–863.

    PubMed  Google Scholar 

  80. Yu, Y., and Merlino, G., 2002, Constitutive c-Met signaling through a nonautocrine mechanism promotes metastasis in a transgenic transplantation model. Cancer Res, 62:2951–2956.

    PubMed  Google Scholar 

  81. Jeffers, M., Rong, S., and Vande Woude, G.F., 1996, Hepatocyte growth factor/scatter factor-Met signaling in tumorigenicity and invasion/metastasis. J Mol Med, 74:505–513.

    Article  PubMed  Google Scholar 

  82. Hammond, D.E., Urbe, S, Vande Woude, G.F., and Clague, M.J., 2001, Down-regulation of MET, the receptor for hepatocyte growth factor. Oncogene, 20(22):2761–2770.

    Article  PubMed  Google Scholar 

  83. Cao, B., Su, U.Y., Oskarsson, M., Zhao, P., Kort, E.J., Fisher, R.J., Wang, L.-M., and Vande Woude, G.F., 2001, Neutralizing monoclonal antibodies to hepatocyte growth factor/scatter factor (HGF/SF) display antitumor activity in animal models. Proc Natl Acad Sci, USA, 98(13):7443–7448.

    Article  PubMed  Google Scholar 

  84. Sahai, E., and Marshall, C.J., 2003, Differing modes of tumour cell invasion have distinct requirements for Rho/ROCK signaling and extracellular proteolysis. Nature Cell Biol, 5(8):711–719.

    Article  PubMed  Google Scholar 

  85. Chen, H., Bernstein, B.W., and Bamburg, J.R., 2000, Regulating actin-filament dynamics in vivo. Trends Biochem Sci, 25(1):19–23.

    Article  Google Scholar 

  86. Shiomi, T., and Okada, Y., 2003, MT1-MMP and MMP-7 in invasion and metastasis of human cancers. Cancer Metast Rev, 22(2–3):145–152.

    Article  Google Scholar 

  87. Marken, J.S., Schieven, G.L., Hellstrom, I., Hellstrom, N.K., and Aruffo, A., 1992, Cloning and expression of the tumor-associated antigen L6. Proc Natl Acad Sci, USA, 89:3503–3507.

    PubMed  Google Scholar 

  88. Wei, Y., Eble, J.A., Wang, Z., Kreidberg, J.A., and Chapman, H.A., 2001, Urokinase receptors promote β1 integrin function through interactions with integrin α3β1. Mol Biol Cell, 12:2975–2986.

    PubMed  Google Scholar 

  89. Blasi, F., Carmeliet, P., 2002, uPAR: a versatile signaling orchestrator. Nature Rev Mol Cell Biol, 3:932–943.

    Article  Google Scholar 

  90. Liu, D., Aguirre Ghiso, J.A., Estrada, Y., and Ossowski, L., 2002, EGFR is a transducer of the urokinase receptor initiated signal that is required for in vivo growth of a human carcinoma. Cancer Cell, 1:445–457.

    Article  PubMed  Google Scholar 

  91. Babic, A.M., Kireeva, M.L., Kolesnikova, T.V., and Lau, L.F., 1998, CYR61, a product of growth factor-inducible immediate early gene, promotes angiogenesis and tumor growth. Proc Natl Acad Sci, USA, 95:6355–6360.

    Article  PubMed  Google Scholar 

  92. Modi, W.S., and Chen, Z.-Q., 1998, Localization of human CXC chemokine subfamily on the long arm of chromosome 4 using radiation hybrids. Proc Natl Acad Sci, USA, 47:136–136.

    Google Scholar 

  93. Vidal-Vanaclocha, F., Fantuzzi, G., Mendoza, L., Fuentes, A.M., Anasagasti, M.J., Martin, J., Carrascal, T., Walsh, P., Reznikov, L.L., Kim, S.-H., et al., 2000, IL-18 regulates IL-1-beta-dependent hepatic melanoma metastasis via vascular cell adhesion molecule-1. Proc Natl Acad Sci, USA, 97:734–739.

    Article  PubMed  Google Scholar 

  94. Metcalf, D., 1985, The granulocyte-macrophage colony-stimulating factors. Science, 229:16–22.

    PubMed  Google Scholar 

  95. Nagata, S., Tsuchiya, M., Asano, S., Kaziro, Y., Yamazaki, T., Yamamoto, O., Hirata, Y., Kubota, N., Oheda, M., Nomura, H., and Ono, M., 1986, Molecular cloning and expression of cDNA for the human granulocyte colony-stimulating factor. Nature, 319:415–418.

    Article  PubMed  Google Scholar 

  96. Mellor SL, Cranfield M, Ries R, Pedersen J, Cancilla B, de Kretser D, Groome NP, Mason AJ, Risbridger GP. Localization of activin beta(A)-, beta(B)-, and beta(C)-subunits in human prostate and evidence for formation of new activin heterodimers of beta(C)-subunit. J Clin Endocr Metab 2000, 85:4851–4858.

    Article  PubMed  Google Scholar 

  97. Richmond, A., Balentien, E., Thomas, H.G., Flaggs, G., Baron, D.E., Spiess, J., Bordoni, R., Francke, U., and Derynck, R., 1988, Molecular characterization and chromosomal mapping of melanoma growth stimulatory activity, a growth factor structurally related to beta-thromboglobulin. EMBO J, 7:2025–2033.

    PubMed  Google Scholar 

  98. Franze, A., Archidiacono, N., Rocchi, M., Marino, M., and Grimaldi, G., 1991, Isolation and expression analysis of a human zinc finger gene (ZNF41) located on the short arm of the X chromosome. Genomics, 9:728–736.

    Article  PubMed  Google Scholar 

  99. Di Magliano, M., Di Lauro, R., and Zannini, M., 2000, Pax 8 has a key role in thyroid cell differentiation. Proc Natl Acad Sci, USA, 97(24):144–149.

    Google Scholar 

  100. Wrighton, S.A., and Stevens, J.C., 1992, The human hepatic cytochromes P450 involved in drug metabolism. Crit Rev Toxicol, 22:1–21.

    PubMed  Google Scholar 

  101. Chen, Z., Zhang, K., Zhang, X., Yuan, X.H., Yuan, Z., Jin, L., and Xiong, M., 2003, Comparison of gene expression between metastatic derivatives and their poorly metastatic parental cells implicates crucial tumor-environment interaction in metastasis of head and neck squamous cell carcinoma. Clin Exp Metastas, 20:335–342.

    Article  Google Scholar 

  102. Ramaswamy, S., Ross, K.N., Lander, E.S., and Golub, T.R., 2003, A molecular signature of metastasis in primary solid tumors. Nature Genet, 33:49–54.

    Article  PubMed  Google Scholar 

  103. Bernards, R., and Weinberg, R.A., 2002, A progression puzzle. Nature, 418:823.

    Article  Google Scholar 

  104. LaBarge, M.A., and Blau, H.M., 2002, Biological progression from adult bone marrow to mononucleate muscle fiber in response to injury. Cell, 111:589–601.

    Article  PubMed  Google Scholar 

  105. Kon, K., and Fujirawa, T., 1994, Transformation of fibroblasts into endothelial cells during angiogenesis. Cell Tissue Res, 278:625–628.

    PubMed  Google Scholar 

  106. Condorelli, G., Borillo, U., De Angelis, L., Latronico, M., Sirabella, D., Coletta, M., Galli, R., Balcón, G., Follenzi, A., Frati, G., et al., 2001, Cardiomyocytes induce endothelial cells to transdifferentiate into cardiac muscle. Proc Natl Acad Sci, USA, 98:10733–10738.

    Article  PubMed  Google Scholar 

  107. Nickoloff, B.J., and Foreman, K.E., 2002, Etiology and pathogenesis of Kaposi's sarcoma Recent Results. Cancer Res, 160:332–342.

    Google Scholar 

  108. Grossman, D., and Altieri, D.C., 2001, Drug resistance in melanoma: mechanisms, apoptosis, and new potential therapeutic targets. Cancer Metast Rev, 20:3–11.

    Article  Google Scholar 

  109. Sherman-Baust, C.A., Weeraratna, A.T., Rangel, L.B.A., Pizer, E.S., Cho, K.R., Schwatz, D.R., Shock, T., and Morin, P.J., 2003, Remodeling of the extracellular matrix through overexpression of collagen VI contributes to cisplatin resistance in ovarian cancer cells. Cancer Cell, 3:377–386.

    Article  PubMed  Google Scholar 

  110. Netti, P.A., Berk, D.A., Swartz, M.A., Grodzinsky, A.J., and Jain, R.K., 2000, Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res, 60:2497–2503.

    PubMed  Google Scholar 

  111. Coussens, L.M., Fingleton, B., and Matrisian, L.M., 2002, Matrix metalloproteinase inhibitors and cancer: trials and tribulations. Science, 295:2387–2392.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Seftor, E., Meltzer, P., Kirschmann, D., Seftor, R., Hendrix, M. (2005). The Epigenetic Influence of the Tumor Microenvironment on Melanoma Plasticity. In: Meadows, G.G. (eds) Integration/Interaction of Oncologic Growth. Cancer Growth and Progression, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3414-8_4

Download citation

Publish with us

Policies and ethics