Skip to main content

Imaging of Angiogenesis In Vivo with Fluorescent Proteins

  • Chapter

Part of the book series: Cancer Growth and Progression ((CAGP,volume 15))

Abstract

We have adapted the surgical orthotopic implantation (SOI) model to image angiogenesis of human tumors labeled with green fluorescent protein (GFP) in nude mice. The nonluminous induced capillaries are clearly visible against the very bright tumor fluorescence examined either intravitally or by whole-body imaging in real time. The fluorescence shadowing replaces the laborious histological techniques for determining blood vessel density. Intravital images of an SOI model of human pancreatic tumors expressing GFP visualized angiogenic capillaries at both primary and metastatic sites. Whole-body optical imaging showed that blood vessel density increased linearly over a 20-week period in an SOI model of human breast cancer expressing GFP. Opening a reversible skin-flap in the light path markedly reduces signal attenuation, increasing detection sensitivity many-fold. The observable depth of tissue is thereby greatly increased. With dual-color fluorescence imaging, effected by using red fluorescent protein (RFP)-expressing tumors growing in GFPexpressing transgenic mice that express GFP in all cells, great clarity the details of the tumor-stroma interaction, especially tumor-induced angiogenesis are visualized. The GFP-expressing tumor vasculature, both nascent and mature, are readily distinguished interacting with the RFP-expressing tumor cells. Using a spectral imaging system based on liquid crystal tunable filters, we were able to separate individual spectral species on a pixel-by-pixel basis. Such techniques non-invasively visualized the presence of host GFPexpressing vessels within the RFP-labeled tumor by whole-body imaging. This new differential dual-colored fluorescence imaging tumor-host model, along with spectral unmixing, can non-invasively visualize in realtime the onset and progression of angiogenesis in a tumor. Thus, fluorescent proteins expressed in vivo offer the highest resolution and sensitivity for real-time whole-body imaging of angiogenesis.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmeliet, P., 2003, Angiogenesis in health and disease. Nature Med 9:653–660.

    Article  PubMed  Google Scholar 

  2. Jain, R.K., 2003, Molecular regulation of vessel maturation. Nature Med 9:685–693.

    Article  PubMed  Google Scholar 

  3. Ruoslahti, E., 2002, Specialization of tumour vasculature. Na Rev Cancer, 2:83–90.

    Article  Google Scholar 

  4. Hendrix, M. J., Seftor, E.A., Hess, A.R., and Seftor, R. E., 2003, Vasculogenic mimicry and tumour-cell plasticity: lessons from melanoma. Nat Rev Cancer 3:411–21.

    Article  Google Scholar 

  5. McDonald, D.M., and Choyke, P.L., 2003, Imaging of angiogenesis: from microscope to clinic. Nat Med 9:713–725.

    Article  PubMed  Google Scholar 

  6. Yang, M., Baranov, E., Li, X-M., Wang, J-W., Jiang, P., Li, L., Moossa, A.R., Penman, S., and Hoffman, R.M., 2001, Whole-body and intravital optical imaging of angiogenesis in orthotopically implanted tumors. Proc Natl Acad Sci USA, 98:2616–2621.

    Article  PubMed  Google Scholar 

  7. Auerbach, R., Kubai, L., Knighton, D., and Folkman, J., 1974, A simple procedure for the long-term cultivation of chicken embryos. Dev Biol 41:391–394.

    Article  PubMed  Google Scholar 

  8. Crum, R., Szabo, S., and Folkman, J., 1985, A new class of steroids inhibits angiogenesis in the presence of heparin or a heparin fragment. Science, 230:1375–1378.

    PubMed  Google Scholar 

  9. Miller, J. W., Stinson, W. G., and Folkman, J., 1993, Regression of experimental iris neovascularization with systemic alpha-interferon. Ophthalmology, 100:9–14.

    PubMed  Google Scholar 

  10. Passaniti, A., Taylor, R. M., Pili, R., Guo, Y., Long, P. V., Haney, J. A., Pauly, R. R., Grant, D. S., and Martin, G. R., 1992, A simple, quantitative method for assessing angiogenesis and antiangiogenic agents using reconstituted basement membrane, heparin, and fibroblast growth factor. Lab Invest, 67:519–528.

    PubMed  Google Scholar 

  11. Alessandri, G., Raju, F., and Gullino, P. M., 1983, Mobilization of capillary endothelium in vitro induced by effectors of angiogenesis in vivo. Cancer Res, 43:1790–1797.

    PubMed  Google Scholar 

  12. Deutsch, T. A., and Hughes, W. F., 1979, Suppressive effects of indomethacin on thermally induced neovascularization of rabbit corneas. Am J Ophthalmol, 87:536–540.

    PubMed  Google Scholar 

  13. Korey, M., Peyman, G. A., and Berkowitz, R., 1977, The effect of hypertonic ointments on corneal alkali burns. Ann Ophthalmol, 9:1383–1387.

    PubMed  Google Scholar 

  14. Mahoney, J. M., and Waterbury, L. D., 1985, Drug effects on the neovascularization response to silver nitrate cauterization of the rat cornea. Curr Eye Res, 4:531–535.

    PubMed  Google Scholar 

  15. Li, W. W., Grayson, G., Folkman, J., and D'Amore, P. A., 1991, Sustained-release endotoxin. A model for inducing corneal neovascularization. Invest. Ophthalmol Vis Sci, 32:2906–2911.

    PubMed  Google Scholar 

  16. Epstein, R. J., Hendricks, R. L., and Stulting, R. D., 1990, Interleukin-2 induces corneal neovascularization in A/J mice. Cornea, 9:318–323.

    PubMed  Google Scholar 

  17. Gimbrone, M. A., Cotran, I. S., Leapman, S. B., and Folkman, J., 1974, Tumor growth and neovascularization: an experimental model using the rabbit cornea. J Natl Cancer Inst, 52:413–427.

    PubMed  Google Scholar 

  18. Fournier, G. A., Lutty, G. A., Watt, S., Fenselau, A., and Patz, A., 1981, A corneal micropocket assay for angiogenesis in the rat eye. Invest Ophthalmol Vis Sci, 21:351–354.

    PubMed  Google Scholar 

  19. Muthukkaruppan, V., and Auerbach, R., 1979, Angiogenesis in the mouse cornea. Science, 205:1416–1418.

    PubMed  Google Scholar 

  20. Papenfuss, H. D., Gross, J. F., Intaglietta, M., and Treese, F. A., 1979, A transparent access chamber for the rat dorsal skin fold. Microvasc Res 18:311–318.

    Article  PubMed  Google Scholar 

  21. Gross, J., Roemer, R., Dewhirst, M., and Meyer, T., 1982, Int J Heat Mass Transfer, 25:1313–1320.

    Article  Google Scholar 

  22. Dewhirst, M., Gross, J., Sim, D., Arnold, P., and Boyer, D., 1984, The effect of rate of heating or cooling prior to heating on tumor and normal tissue microcirculatory blood flow. Biorheology, 21:539–558.

    PubMed  Google Scholar 

  23. Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E. C., Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R. K., et al., 1998, Tumor induction of VEGF promoter activity in stromal cells. Cell, 94:715–725.

    Article  PubMed  Google Scholar 

  24. Li, C. Y., Shan, S., Huang, Q., Braun, R. D., Lanzen, J., Hu, K., Lin, P., and Dewhirst, M. W., 2000, Initial stages of tumor cell-induced angiogenesis: evaluation via skin window chambers in rodent models. J Natl Cancer Inst, 92:143–147.

    Article  Google Scholar 

  25. Al-Mehdi, A. B., Tozawa, K., Fisher, A. B., Shientag, L., Lee, A., and Muschel, R. J., 2000, Intravascular origin of metastasis from the proliferation of endothelium-attached tumor cells: a new model for metastasis. Nat Med, 6:100–102.

    Article  PubMed  Google Scholar 

  26. Huang, Q., Shan, S., Braun, R. D., Lanzen, J., Anyrhambatla, G., Kong, G., Borelli, M., Corry, P., Dewhirst, M. W., and Li, C. Y., 1999, Noninvasive visualization of tumors in rodent dorsal skin window chambers. Nat Biotechnol, 17:1033–1035.

    Article  PubMed  Google Scholar 

  27. Cowen, S. E., Bibby, M. C., and Double, J. A., 1995, Characterisation of the vasculature within a murine adenocarcinoma growing in different sites to evaluate the potential of vascular therapies. Acta Oncol, 34:357–360.

    PubMed  Google Scholar 

  28. Hoffman, R.M., 2002, Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncology, 3:546–556.

    Article  PubMed  Google Scholar 

  29. O’ Reilly, M. S., Boehm, T., Shing, Y., Fukai, N., Vasios, G., Lane, W. S., Flynn, E., Birkhead, J. R., Olsen, B. R., and Folkman, J., 1997, Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 88, 277–285.

    Google Scholar 

  30. Drevs, J., Hofmann, I., Hugenschmidt, H., Wittig, C., Madjar, H., Muller, W., Wood, J., Martiny-Baron, G., Unger, C., and Marme, D., 2000, Effects of PTK787/ZK 222584, a specific inhibitor of vascular endothelial growth factor receptor tyrosine kinases, on primary tumor, metastasis, vessel density, and blood flow in a murine renal cell carcinoma model. Cancer Res, 60:4819–4824.

    PubMed  Google Scholar 

  31. Prewett, M., Huber, J., Li, Y., Santiago, A., O'Connor, W., King, K., Overholser, J., Hooper, A., Pytowski, B., Witte, L., et al., 1999, Antivascular endothelial growth factor receptor (fetal liver kinase 1) monoclonal antibody inhibits tumor angiogenesis and growth of several mouse and human tumors. Cancer Res, 59:5209–5218.

    PubMed  Google Scholar 

  32. Kurebayashi, J., Kunisue, H., Yamamoto, S., Kurosumi, M., Otsuki, T., and Sonoo, H., 2000, Paradoxical hormone responses of KPL-1 breast cancer cells in vivo: a significant role of angiogenesis in tumor growth. Oncology, 59:158–165.

    Article  PubMed  Google Scholar 

  33. Hoffman, R.M., 1999, Orthotopic metastatic mouse models for anticancer drug discovery and evaluation: a bridge to the clinic. Investigational New Drugs 17:343–359.

    Article  PubMed  Google Scholar 

  34. Yang, M., Baranov, E., Wang, J-W., Jiang, P., Wang, X., Sun, F-X., Bouvet, M., Moossa, A.R., Penman, S., and Hoffman, R.M., 2002, Direct external imaging of nascent cancer, tumor progression, angiogenesis, and metastasis on internal organs in the fluorescent orthotopic model. Proc Natl Acad Sci USA 99:3824–3829.

    PubMed  Google Scholar 

  35. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T., and Nishimune, T., 1997, 'Green mice’ as a source of ubiquitous green cells. FEBS Letters, 407: 313–319.

    Article  PubMed  Google Scholar 

  36. Yang, M., Li, L., Jiang, P., Moossa, A.R., Penman, S., and Hoffman, R.M., 2003, Dual-color fluorescence imaging distinguishes tumor cells from induced host angiogenic vessels and stromal cells. Proc Natl Acad Sci USA, 100:14259–14262.

    Article  PubMed  Google Scholar 

  37. Levenson, R., Yang, M., and Hoffman, R.M., 2004, Whole-body dual-color differential fluorescence imaging of tumor angiogenesis enhanced by spectral unmixing. Proc Am Assoc Cancer Res, accepted abstract.

    Google Scholar 

  38. Yamamoto, N., Yang, M., Jiang, P., Xu, M., Tsuchiya, H., Tomita, K., Moossa, A.R., and Hoffman, R.M., 2003, Determination of clonality of metastasis by cell-specific color-coded fluorescent-protein imaging. Cancer Res, 63:7785–7790.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Hoffman, R.M. (2005). Imaging of Angiogenesis In Vivo with Fluorescent Proteins. In: Meadows, G.G. (eds) Integration/Interaction of Oncologic Growth. Cancer Growth and Progression, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3414-8_3

Download citation

Publish with us

Policies and ethics