Skip to main content

Bone Stromal Cells As Therapeutic Targets In Osseous Metastasis

  • Chapter

Part of the book series: Cancer Growth and Progression ((CAGP,volume 15))

Abstract

The dissemination of cancer from the primary site of growth to distant organs is an early event that leads to the random deposition of tumor cells throughout the organs of the body. Growth of these seeded cellular singularities into secondary, clinically manifest tumors is a notably non-random event. In addition to being the primary tumor site for multiple myeloma and several forms of bone cancer, the bone is the favored site for metastasis of breast, lung and prostate cancer. Once in the bone, these cancers interact with the bone microenvironment to become more aggressive and resistant to therapy. Therefore, the bone stroma is likely to play a major role in the support, growth and improved survival of the metastatic cancer cell. As such, therapeutic intervention targeting the bone stromal should enhance our ability to eliminate bone metastases.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jemal, A., Tiwari, R.C., Murray, T., et al., 2004, Cancer statistics, 2004. CA Cancer J Clin, 54(1):8–29.

    PubMed  Google Scholar 

  2. Tu, S.M., and Lin, S.H., 2004, Clinical aspects of bone metastases in prostate cancer. Cancer Treat Res, 118:23–46.

    PubMed  Google Scholar 

  3. Jacobs, S.C., 1983, Spread of prostatic cancer to bone. Urology, 21(4):337–344.

    Article  Google Scholar 

  4. Koutsilieris, M., 1995, Skeletal metastases in advanced prostate cancer: cell biology and therapy. Crit Rev Oncol Hematol, 18(1):51–64.

    PubMed  Google Scholar 

  5. Galasko, C.S., 1986, Skeletal metastases. Clin Orthop, 210:18–30.

    PubMed  Google Scholar 

  6. Pauli, B.U., and Lee, C.L., 1988, Organ preference of metastasis. The role of organ-specifically modulated endothelial cells. Lab Invest, 58(4):–387.

    Google Scholar 

  7. Pasqualini, R., and Ruoslahti, E., 1996, Organ targeting in vivo using phage display peptide libraries. Nature, 380(6572):364–366.

    Article  PubMed  Google Scholar 

  8. Ruoslahti, E., and Rajotte, D., 2000, An address system in the vasculature of normal tissues and tumors. Annu Rev Immunol, 18:813–827.

    Article  PubMed  Google Scholar 

  9. Clement, G., Bisoffi, M., Finger, A.N., et al., 2003, Peptabodies as tools to test ligands isolated from phage-displayed peptide libraries. J Immunol Methods, 276(1–2):135–141.

    PubMed  Google Scholar 

  10. Koivunen, E., Arap, W., Rajotte, D., et al., 1999, Identification of receptor ligands with phage display peptide libraries. J Nucl Med, 40(5):883–888.

    PubMed  Google Scholar 

  11. Ivanenkov, V., Felici, F., and Menon, A.G., 1999, Uptake and intracellular fate of phage display vectors in mammalian cells. Biochim Biophys Acta, 1448(3):450–462.

    Article  Google Scholar 

  12. Ivanenkov, V.V., Felici, F., and Menon A.G., 1999, Targeted delivery of multivalent phage display vectors into mammalian cells. Biochim Biophys Acta, 1448(3):463–472.

    Article  PubMed  Google Scholar 

  13. Tseng-Law, J., P. Szalay, R., Guillermo, et al., 1999, Identification of a peptide directed against the anti-CD34 antibody, 9C5, by phage display and its use in hematopoietic stem cell selection. Exp Hematol, 27(5):936–945.

    Article  PubMed  Google Scholar 

  14. Cwirla, S.E., Peters E.A., Barrett R.W., et al., 1990, Peptides on phage: a vast library of peptides for identifying ligands. Proc Natl Acad Sci U S A, 87(16):6378–6382.

    PubMed  Google Scholar 

  15. Pasqualini, R., Koivunen, E., and Ruoslahti E., A peptide isolated from phage display libraries is a structural and functional mimic of an RGD-binding site on integrins. J Cell Biol, 130(5):1189–1196.

    Google Scholar 

  16. Sparks, A.B., Adey, N.B., Quilliam, L.A., et al., 1995, Screening phage-displayed random peptide libraries for SH3 ligands. Methods Enzymol, 255:498–509.

    PubMed  Google Scholar 

  17. Arap, W., Pasqualini, R., and Ruoslahti, E., 1998, Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science, 279(5349):377–380.

    Article  PubMed  Google Scholar 

  18. Arap, W., Pasqualini, R., and Ruoslahti, E., 1998, Chemotherapy targeted to tumor vasculature. Curr Opin Oncol, 10(6):560–565.

    PubMed  Google Scholar 

  19. Arap, W., Haedicke, W., Bernasconi, M., et al., 2002, Targeting the prostate for destruction through a vascular address. Proc Natl Acad Sci U S A, 99(3):1527–1531.

    Article  Google Scholar 

  20. Devlin, J.J., Panganiban, L.C., and Devlin, P.E., 1990, Random peptide libraries: a source of specific protein binding molecules. Science, 249(4967):404–406.

    PubMed  Google Scholar 

  21. Kay, B.K., Kasanov, J., Knight, S., et al., 2000, Convergent evolution with combinatorial peptides. FEBS Lett, 480(1):55–62.

    Article  PubMed  Google Scholar 

  22. Pasqualini, R., Koivunen, E., Kain, R., et al., 2000, Aminopeptidase N is a receptor for tumor-homing peptides and a target for inhibiting angiogenesis. Cancer Res, 60(3):722–727.

    PubMed  Google Scholar 

  23. Brown, K.C., 2000, New approaches for cell-specific targeting: identification of cell-selective peptides from combinatorial libraries. Curr Opin Chem Biol, 4(1):16–21.

    Article  PubMed  Google Scholar 

  24. White, S.J., Nicklin, S.A., Sawamura, T., et al., 2001, Identification of peptides that target the endothelial cell-specific LOX-1 receptor. Hypertension, 37(2 Part 2):449–455.

    PubMed  Google Scholar 

  25. Rubens, R.D., and Mundy, G.R., 2000, Cancer and the skeleton. Martin Dunitz, Malden, MA, London, Blackwell Science, USA, viii:286.

    Google Scholar 

  26. Batson, O.V., 1967, The vertebral system of veins as a means for cancer dissemination. Prog Clin Cancer, 3:1–18.

    PubMed  Google Scholar 

  27. Carlin, B.I., and Andriole, G.L., 2000, The natural history, skeletal complications, and management of bone metastases in patients with prostate carcinoma. Cancer, 88(12 Suppl):2989–2994.

    Article  PubMed  Google Scholar 

  28. Cher, M.L., 2001, Mechanisms governing bone metastasis in prostate cancer. Curr Opin Urol, 11(5):483–488.

    Article  PubMed  Google Scholar 

  29. Saitoh, H., Hida, M., Shimbo, T., et al., 1984, Metastatic patterns of prostatic cancer. Correlation between sites and number of organs involved. Cancer, 54(12):3078–3084.

    PubMed  Google Scholar 

  30. Cooper, C.R., Chay, C.H., Gendernalik, J.D., et al., 2003, Stromal factors involved in prostate carcinoma metastasis to bone. Cancer, 97(3 Suppl):739–747.

    Article  PubMed  Google Scholar 

  31. Sikes, R.A., Nicholson, B.E., Koeneman, K.S., et al., 2004, Cellular interactions in the tropism of prostate cancer to bone. Int J Cancer, 110(4):497–503.

    Article  PubMed  Google Scholar 

  32. Cooper, C.R., McLean, L., Walsh, M., et al., 2000, Preferential adhesion of prostate cancer cells to bone is mediated by binding to bone marrow endothelial cells as compared to extracellular matrix components in vitro. Clin Cancer Res, 6(12):4839–4847.

    PubMed  Google Scholar 

  33. Lehr, J.E., and Pienta, K.J., 1998, Preferential adhesion of prostate cancer cells to a human bone marrow endothelial cell line. J Natl Cancer Inst, 90(2):118–123.

    Article  PubMed  Google Scholar 

  34. Stewart, D.A., Cooper, C.R., and Sikes R.A., 2004, Changes in extracellular matrix (ECM) and ECM-associated proteins in the metastatic progression of prostate cancer. Reprod Biol Endocrinol, 2(1):2.

    Article  PubMed  Google Scholar 

  35. Cooper, C.R., McLean, L., Mucci, N.R., et al., 2000, Prostate cancer cell adhesion to quiescent endothelial cells is not mediated by beta-1 integrin subunit. Anticancer Res, 20(6B):4159–4162.

    PubMed  Google Scholar 

  36. Romanov, V.I., Durand, D.B., and Petrenko V.A., 2001, Phage display selection of peptides that affect prostate carcinoma cells attachment and invasion. Prostate, 47(4):239–251.

    Article  PubMed  Google Scholar 

  37. Cooper, C.R., Chaib, H., Chay, C. et al., 2003, The identification of reticulocalbin's role in prostate cancer cell adhesion to human bone marrow endothelium by a novel phage display system. Oncology (Supplement), 17:42–43.

    Google Scholar 

  38. D'Amore, P.A., 1988, Antiangiogenesis as a strategy for antimetastasis. Semin Thromb Hemost, 14(1):73–78.

    PubMed  Google Scholar 

  39. Fidler, I.J., 2003, The pathogenesis of cancer metastasis: the 'seed and soil’ hypothesis revisited. Nat Rev Cancer, 3(6):453–458.

    Article  PubMed  Google Scholar 

  40. Bergers, G. and Benjamin, L.E., 2003, Tumorigenesis and the angiogenic switch. Nat Rev Cancer, 3(6):401–410.

    Article  PubMed  Google Scholar 

  41. Bono, A.V., Celato, N., Cova V., et al., 2002, Microvessel density in prostate carcinoma. Prostate Cancer Prostatic Dis, 5(2):123–127.

    Article  PubMed  Google Scholar 

  42. Bostwick, D., Wheeler, T., Blute, M., et al., 1996, Optimized microvessel density analysis improves prediction of cancer stage from prostate needle biopsies. Urology, 48:47–57.

    Article  PubMed  Google Scholar 

  43. Brawer, M.K., 1996, Quantitative microvessel density. A staging and prognostic marker for human prostatic carcinoma. Cancer, 78(2):345–349.

    Article  PubMed  Google Scholar 

  44. Lissbrant, I., Stattin, P., Damber, J., et al., 1997, Vascular density is a predictor of cancer-specific survival in prostatic carcinoma. Prostate, 33:38–45.

    Article  PubMed  Google Scholar 

  45. Matsushima, H., Goto, T., Hosaka, Y., et al., 1999, Correlation between proliferation, apoptosis, and angiogenesis in prostate carcinoma and their relation to androgen ablation. Cancer, 85(8):1822–1827.

    Article  PubMed  Google Scholar 

  46. Silberman, M., Partin, A., Veltri, R., et al., 1997, Tumor angiogenesis correlates with progression after radical prostatectomy but not with pathologic stage in Gleason sum 5 to 7 adenocarcinoma of the prostate. Cancer, 79:772–779.

    Article  PubMed  Google Scholar 

  47. Goddard, J.C., Sutton, C.D., Berry, D.P., et al., 2001, The use of microvessel density in assessing human urological tumours. BJU Int, 87(9):866–875.

    Article  Google Scholar 

  48. Leek, R.D., 2001, The prognostic role of angiogenesis in breast cancer. Anticancer Res, 21(6B):4325–4331.

    PubMed  Google Scholar 

  49. Sauer, G. and Deissler, H., 2003, Angiogenesis: prognostic and therapeutic implications in gynecologic and breast malignancies. Curr Opin Obstet Gynecol, 15(1):45–49.

    Article  PubMed  Google Scholar 

  50. Bamberger, E.S. and C.W. Perrett, Angiogenesis in epithelian ovarian cancer. Mol Pathol, 2002. 55(6):348–359.

    Article  PubMed  Google Scholar 

  51. Bamberger, E.S. and Perrett, C.W., 2002, Angiogenesis in benign, pre-malignant and malignant vulvar lesions. Anticancer Res, 22(6C):3853–3865.

    PubMed  Google Scholar 

  52. Bristow, R.E., 1999, Endometrial cancer. Curr Opin Oncol, 11(5):388–393.

    Article  PubMed  Google Scholar 

  53. Abulafia, O., Triest, W.E., and Sherer, D.M., 1999, Angiogenesis in malignancies of the female genital tract. Gynecol Oncol, 72(2):220–231.

    Article  Google Scholar 

  54. Goth, M.I., Hubina, E., Raptis, S., et al., 2003, Physiological and pathological angiogenesis in the endocrine system. Microsc Res Tech, 60(1):98–106.

    Article  PubMed  Google Scholar 

  55. Giatromanolaki, A., 2001, Prognostic role of angiogenesis in non-small cell lung cancer. Anticancer Res, 21(6B):4373–4382.

    PubMed  Google Scholar 

  56. Moreto, M., Diagnosis of esophagogastric tumors. Endoscopy, 2001. 33(1):1–7.

    Article  Google Scholar 

  57. Tarta, C., Teixeira, C.R., Tanaka, S., et al., 2002, Angiogenesis in advanced colorectal adenocarcinoma with special reference to tumoral invasion. Arq Gastroenterol, 39(1):32–38.

    Article  PubMed  Google Scholar 

  58. Kakeji, Y., Maehara, Y., Sumiyoshi, Y., et al., 2002, Angiogenesis as a target for gastric cancer. Surgery, 131(1 Suppl):S48–54.

    Article  PubMed  Google Scholar 

  59. Qin, L.X. and Tang, Z.Y., 2002, The prognostic molecular markers in hepatocellular carcinoma. World J Gastroenterol, 8(3):385–392.

    PubMed  Google Scholar 

  60. Pluda, J.M. and Parkinson, D.R., 1996, Clinical implications of tumor-associated neovascularization and current antiangiogenic strategies for the treatment of malignancies of pancreas. Cancer 78(3 Suppl):680–687.

    PubMed  Google Scholar 

  61. Rajkumar, S.V. and Witzig, T.E., 2000, A review of angiogenesis and antiangiogenic therapy with thalidomide in multiple myeloma. Cancer Treat Rev, 26(5):351–362.

    Article  PubMed  Google Scholar 

  62. Vacca, A., Ribatti, D., Roccaro, A.M., et al., 2001, Bone marrow angiogenesis in patients with active multiple myeloma. Semin Oncol, 28(6):543–550.

    Article  PubMed  Google Scholar 

  63. Molica, S., 2001, Angiogenesis in B-cell chronic lymphocytic leukemia: methods of study, clinical significance and prognostic implications. Leuk Lymphoma, 42(4):603–607.

    PubMed  Google Scholar 

  64. Weidner, N., 1993, Tumor angiogenesis: review of current applications in tumor prognostication. Semin Diagn Pathol, 10(4):302–313.

    PubMed  Google Scholar 

  65. Weidner, N., Semple, J.P., Welch, W.R., et al., 1991, Tumor angiogenesis and metastasis—correlation in invasive breast carcinoma. N Engl J Med, 324(1):1–8.

    Google Scholar 

  66. Hanford, H.A., Wong, C.A., Kassan, H., et al., 2003, Angiostatin(4.5)-mediated apoptosis of vascular endothelial cells. Cancer Res, 63(14):4275–4280.

    PubMed  Google Scholar 

  67. O'Reilly, M.S., Holmgren, L., Shing, Y., et al., 1994, Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell, 79(2):315–328.

    Article  PubMed  Google Scholar 

  68. Wang, H., Schultz, R., Hong, J., et al., 2004, Cell surface-dependent generation of angiostatin4.5. Cancer Res, 64(1):162–168.

    Article  PubMed  Google Scholar 

  69. O'Reilly, M.S., Boehm, T., Shing, Y., et al., 1997, Endostatin: an endogenous inhibitor of angiogenesis and tumor growth. Cell, 88(2):277–285.

    Article  PubMed  Google Scholar 

  70. Sudhakar, A., Sugimoto, H., Yang, C., et al., 2003, Human tumstatin and human endostatin exhibit distinct antiangiogenic activities mediated by alpha v beta 3 and alpha 5 beta 1 integrins. Proc Natl Acad Sci U S A, 100(8):4766–4771.

    Article  PubMed  Google Scholar 

  71. Maeshima, Y., Sudhakar, A., Lively, J.C., et al., 2002, Tumstatin, an endothelial cell-specific inhibitor of protein synthesis. Science, 295(5552):140–143.

    Article  Google Scholar 

  72. Capitosti, S.M., Hansen, T.P., and Brown, M.L., 2004, Thalidomide analogues demonstrate dual inhibition of both angiogenesis and prostate cancer. Bioorg Med Chem, 12(2):327–336.

    Article  Google Scholar 

  73. Figg, W.D., Kruger, E.A., Price, D.K., et al., 2002, Inhibition of angiogenesis: treatment options for patients with metastatic prostate cancer. Invest New Drugs, 20(2):183–194.

    Article  Google Scholar 

  74. Hashimoto, Y., 2002, Structural development of biological response modifiers based on thalidomide. Bioorg Med Chem, 10(3):461–479.

    Article  PubMed  Google Scholar 

  75. Marriott, J.B., Clarke, I.A., Czajka, A., et al., 2003, A novel subclass of thalidomide analogue with anti-solid tumor activity in which caspase-dependent apoptosis is associated with altered expression of bcl-2 family proteins. Cancer Res, 63(3):593–599.

    PubMed  Google Scholar 

  76. Xiao, Z., Schaefer, K., Firestine, S., et al., 2002, Solid-phase synthesis of thalidomide and its analogues. J Comb Chem, 4(2):149–153.

    Article  PubMed  Google Scholar 

  77. Morris, M.J. and Scher, H.I., 2002, Novel therapies for the treatment of prostate cancer: current clinical trials and development strategies. Surg Oncol, 11(1–2):13–23.

    Article  PubMed  Google Scholar 

  78. Kerbel, R.S., Yu, J., Tran, J., et al., 2001, Possible mechanisms of acquired resistance to antiangiogenic drugs: implications for the use of combination therapy approaches. Cancer Metastasis Rev, 20(1–2):79–86.

    Article  PubMed  Google Scholar 

  79. Kerbel, R.S., Klement, G., Pritchard, K.I., et al., 2002, Continuous low-dose anti-angiogenic/metronomic chemotherapy: from the research laboratory into the oncology clinic. Ann Oncol, 13(1):12–15.

    Article  PubMed  Google Scholar 

  80. Browder, T., Butterfield, C.E. Kraling, B.M., et al., 2000, Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res, 60(7):1878–1886.

    PubMed  Google Scholar 

  81. Klement, G., Baruchel, S., Rak, J., et al., 2000, Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest, 105(8):R15–24.

    PubMed  Google Scholar 

  82. Klement, G., Huang, P., Mayer, B., et al., 2002, Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res, 8(1):221–232.

    PubMed  Google Scholar 

  83. Colleoni, M., Rocca, A., Sandri, M.T., et al., 2002, Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol, 13(1):73–80.

    Article  Google Scholar 

  84. Drake, M.J., Robson, W., Mehta, P., et al., 2003, An open-label phase II study of low-dose thalidomide in androgen-independent prostate cancer. Br J Cancer, 88(6):822–827.

    Article  PubMed  Google Scholar 

  85. Figg, W.D., Arlen, P., Gulley, J., et al., 2001, A randomized phase II trial of docetaxel (taxotere) plus thalidomide in androgen-independent prostate cancer. Semin Oncol, 28(4 Suppl 15):62–66.

    Article  Google Scholar 

  86. Figg, W.D., Dahut, W., Duray, P., et al., 2001, A randomized phase II trial of thalidomide, an angiogenesis inhibitor, in patients with androgen-independent prostate cancer. Clin Cancer Res, 7(7):1888–1893.

    PubMed  Google Scholar 

  87. Bauer, K.S., Dixon, S.C., and Figg, W.D., 1998, Inhibition of angiogenesis by thalidomide requires metabolic activation, which is species-dependent. Biochem Pharmacol, 55(11):1827–1834.

    Article  PubMed  Google Scholar 

  88. Richardson, P., Hideshima, T., and Anderson, K., 2002,Thalidomide: emerging role in cancer medicine. Annu Rev Med, 53:629–657.

    Article  PubMed  Google Scholar 

  89. Arlen, P.E.A., 2002, NCI Intramural Approach to Advanced Prostate Cancer. Clin Pros Canc, 1(3):153–162.

    Google Scholar 

  90. Stephens, T.D., Bunde, C.J., and Fillmore B.J, 2000, Mechanism of action in thalidomide teratogenesis. Biochem Pharmacol, 59(12):1489–1499.

    Article  PubMed  Google Scholar 

  91. Jonsson, N.A., 1972, Chemical structure and teratogenic properties. IV. An outline of a chemical hypothesis for the teratogenic action of thalidomide. Acta Pharm Suec, 9(6):543–562.

    PubMed  Google Scholar 

  92. Capitosti, S.M., Hansen, T.P., and Brown, M.L., 2003, Facile synthesis of an azido-labeled thalidomide analogue. Org Lett, 5(16):2865–2867.

    Article  PubMed  Google Scholar 

  93. Ng, S.S., Gutschow, M., Weiss, M., et al., 2003, Antiangiogenic activity of N-substituted and tetrafluorinated thalidomide analogues. Cancer Res, 63(12):3189–3194.

    PubMed  Google Scholar 

  94. Marks, M.G., Shi, J., Fry, M.O., et al., 2002, Effects of putative hydroxylated thalidomide metabolites on blood vessel density in the chorioallantoic membrane (CAM) assay and on tumor and endothelial cell proliferation. Biol Pharm Bull, 25(5):597–604.

    Article  Google Scholar 

  95. Diduch, D.R., Coe, M.R., Joyner, C., et al., 1993, Two cell lines from bone marrow that differ in terms of collagen synthesis, osteogenic characteristics, and matrix mineralization. J Bone Joint Surg Am, 75(1):92–105.

    PubMed  Google Scholar 

  96. Dahir, G.A., Cui, Q., Anderson, P., et al., 2000, Pluripotential mesenchymal cells repopulate bone marrow and retain osteogenic properties. Clin Orthop, 379Suppl):S134–145.

    PubMed  Google Scholar 

  97. Devine, M.J., Mierisch, C.M., Jang, E., et al., 2002, Transplanted bone marrow cells localize to fracture callus in a mouse model. J Orthop Res, 20(6):1232–1239.

    Article  PubMed  Google Scholar 

  98. Shen, F.H., Visger, J.M., Balian, G., et al., 2002, Systemically administered mesenchymal stromal cells transduced with insulin-like growth factor-I localize to a fracture site and potentiate healing. J Orthop Trauma, 16(9):651–659.

    Article  PubMed  Google Scholar 

  99. Chung, L.W., Hsieh, C.L., Law, A., et al., 2003, New targets for therapy in prostate cancer: modulation of stromal-epithelial interactions. Urology, 62(5 Suppl 1):44–54.

    Article  PubMed  Google Scholar 

  100. Sung, S.Y., and Chung, L.W., 2002, Prostate tumorstroma interaction: molecular mechanisms and opportunities for therapeutic targeting. Differentiation, 70(9–10):506–521.

    Article  Google Scholar 

  101. Thalmann, G.N., Sikes, R.A., Wu, T.T., et al., 2000, LNCaP progression model of human prostate cancer: androgen-independence and osseous metastasis. Prostate, 44(2):91–103, Jul 101;144(102).

    Article  PubMed  Google Scholar 

  102. Thalmann, G.N., Anezinis, P.E., Chang, S.M., et al., 1994, Androgen-independent cancer progression and bone metastasis in the LNCaP model of human prostate cancer. Cancer Res, 54(10):2577–2581.

    PubMed  Google Scholar 

  103. Gardner, T.A., Ko, S.-C., Kao, C., et al., 1998, Exploiting stromal-epithelial interaction for model development and new strategies of gene therapy for prostate cancer and osteosarcoma metastases (review). Gene Ther. Mol. Biol., 2:41–58.

    Google Scholar 

  104. Hsieh, C.L., Gardner, T.A., Miao, L., et al., 2004, Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells. Cancer Gene Ther, 11(2):148–155.

    Article  PubMed  Google Scholar 

  105. Robinson, V.L., Kauffman, E.C., Sokoloff, M.H., et al., 2004, The basic biology of metastasis. Cancer Treat Res, 118:1–21.

    PubMed  Google Scholar 

  106. Hsieh, C.L., Yang, L., Miao, L., et al., 2002, A novel targeting modality to enhance adenoviral replication by vitamin D(3) in androgen-independent human prostate cancer cells and tumors. Cancer Res, 62(11):3084–3092.

    PubMed  Google Scholar 

  107. Koeneman, K.S., Yeung, F., and Chung, L.W., 1999, Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate, 39(4):246–261.

    Article  PubMed  Google Scholar 

  108. Thalmann, G.N., Sikes, R.A., Devoll, R.E., et al., 1999, Osteopontin: possible role in prostate cancer progression. Clin Cancer Res, 5(8):2271–2277.

    PubMed  Google Scholar 

  109. Ko, S.C., Cheon, J., Kao, C., et al., 1996, Osteocalcin promoter-based toxic gene therapy for the treatment of osteosarcoma in experimental models. Cancer Res, 56(20):4614–4619.

    PubMed  Google Scholar 

  110. Chung, L.W., 2003, Prostate carcinoma bone-stroma interaction and its biologic and therapeutic implications. Cancer, 97(3 Suppl): p. 772–778.

    Article  PubMed  Google Scholar 

  111. McCauley, L.K. and Schneider, A., 2004, PTHrP and skeletal metatasis. Cancer Treat Res, 118:125–147.

    PubMed  Google Scholar 

  112. Brown, J.M., Zhang, J., and Keller, E.T., 2004, Opg, RANKl, and RANK in cancer metastasis: expression and regulation. Cancer Treat Res, 118:149–172.

    PubMed  Google Scholar 

  113. Roodman, G.D. and Choi, S.J., 2004, MIP-1 alpha and myeloma bone disease. Cancer Treat Res, 118:83–100.

    PubMed  Google Scholar 

  114. Lee, L.F., Louie, M.C., Desai, S.J., et al., 2004, Interleukin-8 confers androgen-independent growth and migration of LNCaP: differential effects of tyrosine kinases Src and FAK. Oncogene, 23(12):2197–2205.

    Article  PubMed  Google Scholar 

  115. Kim, O., Jiang, T., Xie, Y., et al., 2004, Synergism of cytoplasmic kinases in IL6-induced ligand-independent activation of androgen receptor in prostate cancer cells. Oncogene, 23(10):1838–1844.

    Article  PubMed  Google Scholar 

  116. Blaszczyk, N., Masri, B.A., Mawji, N.R., et al., 2004, Osteoblast-derived factors induce androgen-independent proliferation and expression of prostate-specific antigen in human prostate cancer cells. Clin Cancer Res, 10(5):1860–1869.

    Article  PubMed  Google Scholar 

  117. Xie, S., Lin, H.K., Ni, J., et al., 2004, Regulation of interleukin-6-mediated PI3K activation and neuroendocrine differentiation by androgen signaling in prostate cancer LNCaP cells. Prostate, 60(1):61–67.

    Article  Google Scholar 

  118. Lee, S.O., Lou, W., Johnson, C.S., et al., 2004, Interleukin-6 protects LNCaP cells from apoptosis induced by androgen deprivation through the Stat3 pathway. Prostate, 60(3):178–186.

    Article  PubMed  Google Scholar 

  119. Pu, Y.S., Hour, T.C., Chuang, S.E., et al., 2004, Interleukin-6 is responsible for drug resistance and anti-apoptotic effects in prostatic cancer cells. Prostate, 60(2):120–129.

    Article  PubMed  Google Scholar 

  120. Royuela, M., Ricote, M., Parsons, M.S., et al., 2004, Immunohistochemical analysis of the IL-6 family of cytokines and their receptors in benign, hyperplasic, and malignant human prostate. J Pathol, 202(1):41–49.

    Article  PubMed  Google Scholar 

  121. Kim, J., Adam, R.M., Solomon, K.R., et al., 2004, Involvement of cholesterol-rich lipid rafts in interleukin-6-induced neuroendocrine differentiation of LNCaP prostate cancer cells. Endocrinology, 145(2):613–619.

    Article  PubMed  Google Scholar 

  122. Smith, P.C., Hobisch, A., Lin, D.L., et al., 2001, Interleukin-6 and prostate cancer progression. Cytokine Growth Factor Rev, 12(1):33–40.

    Article  PubMed  Google Scholar 

  123. Guise, T.A., Yin, J.J., Taylor, S.D., et al., 1996, Evidence for a causal role of parathyroid hormone-related protein in the pathogenesis of human breast cancer-mediated osteolysis. J Clin Invest, 98(7):1544–1549.

    PubMed  Google Scholar 

  124. Sordillo, E.M. and Pearse, R.N., 2003, RANK-Fc: a therapeutic antagonist for RANK-L in myeloma. Cancer, 97(3 Suppl): 802–812.

    Article  PubMed  Google Scholar 

  125. Gallwitz, W.E., Guise, T.A., and Mundy, G.R., 2002, Guanosine nucleotides inhibit different syndromes of PTHrP excess caused by human cancers in vivo. J Clin Invest, 110(10):1559–1572.

    Article  PubMed  Google Scholar 

  126. Tovar Sepulveda, V.A., and Falzon, M., 2002, Regulation of PTH-related protein gene expression by vitamin D in PC-3 prostate cancer cells. Mol Cell Endocrinol, 190(1–2):115–124.

    Article  PubMed  Google Scholar 

  127. Yoneda, T., Hashimoto, N., and Hiraga, T., 2004, Bisphosphonate actions on bone and visceral metastases. Cancer Treat Res, 118:213–229.

    PubMed  Google Scholar 

  128. Yoneda, T., Hashimoto, N., and Hiraga, T., 2003, Bisphosphonate actions on cancer. Calcif Tissue Int, 73(4):315–318.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Sikes, R., Cooper, C., Beck, G., Pruitt, F., Brown, M., Balian, G. (2005). Bone Stromal Cells As Therapeutic Targets In Osseous Metastasis. In: Meadows, G.G. (eds) Integration/Interaction of Oncologic Growth. Cancer Growth and Progression, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3414-8_21

Download citation

Publish with us

Policies and ethics