Skip to main content

Role of Microenvironment on Gene Expression, Angiogenesis and Microvascular Function in Tumors

  • Chapter
Integration/Interaction of Oncologic Growth

Part of the book series: Cancer Growth and Progression ((CAGP,volume 15))

Abstract

Solid tumors are organ-like entities. In addition to neoplastic cells, they consist of non-transformed host stromal cells such as endothelial cells, fibroblasts and inflammatory cells. All of these cells are embedded in a characteristic extracellular matrix and are surrounded by specific molecular and metabolic microenvironments. Blood and lymphatic vessels, which are important for maintaining the homeostasis of living organisms, are compromised in solid tumors, causing various physiological barriers to the delivery of therapeutic agents to tumors in sufficient quantity and under optimal conditions. There is a growing body of evidence that stromal cells are not quiescent bystanders; instead, they significantly influence the pathophysiology of tumors. Both stromal cells and tumor cells participate in the formation of this milieu, and the microenvironment, which includes the expression of positive and negative regulators of angiogenesis, influences the biology of these cells. Any of these factors — tumor cells, stromal cells, and the local microenvironment of particular organs — may vary during treatment and may influence the efficiency of various treatment modalities. Therefore, stromal cells and the tumor microenvironment offer novel targets for tumor detection and treatment. A better understanding of host-tumor interaction and formation, as well as of the function of blood and lymphatic vessels in tumors in different microenvironments, is warranted in order to facilitate the development of such strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Carmeliet, P., and Jain, R.K., 2000, Angiogenesis in cancer and other diseases: from genes to function to therapy. Nature, 407:249–257.

    PubMed  Google Scholar 

  2. Jain, R.K., 2003, Molecular regulation of vessel maturation. Nature Medicine, 9:685–693.

    Article  PubMed  Google Scholar 

  3. Jain, R.K., Munn, L.L., and Fukumura, D., 2002, Dissecting tumor pathophysiology using intravital microscopy. Nature Reviews Cancer, 2:266–276.

    Article  PubMed  Google Scholar 

  4. Leunig, M., Yuan, F., Menger, M.D., Boucher, Y., Goetz, A.E., Messmer, K., and Jain, R.K., 1992, Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Research, 52:6553–6560.

    PubMed  Google Scholar 

  5. Yuan, F., Salehi, H.A., Boucher, Y., Vasthare, U.S., Tuma, R.F., and Jain, R.K., 1994, Vascular permeability and microcirculation of gliomas and mammary carcinomas transplanted in rat and mouse cranial window. Cancer Research, 54:4564–4568.

    PubMed  Google Scholar 

  6. Fukumura, D., Yuan, F., Monsky, W.L., Chen, Y., and Jain, R.K., 1997, Effect of host microenvironment on the microcirculation of human colon adenocarcinoma. American Journal of Pathology, 151:679–688.

    PubMed  Google Scholar 

  7. Gohongi, T., Fukumura, D., Boucher, Y., Yun, C.-O. Soff, G.A., Compton, C., Todoroki, T., and Jain, R.K., 1999, Tumor-host interactions in the gallbladder suppress distal angiogenesis and tumor growth: Involvement of transforming growth factor β1. Nature Medicine, 5:1203–1208.

    Article  PubMed  Google Scholar 

  8. Tsuzuki, Y., Carreira, C.M., Bockhorn, M., Xu, L., Jain, R.K., and Fukumura, D., 2001, Pancreas microenvironment promotes VEGF expression and tumor growth: Novel window models for pancreatic tumor angiogenesis and microcirculation. Laboratory Investigation, 81:1439–1452.

    PubMed  Google Scholar 

  9. Monsky, W.L., Carreira, C.M., Tsuzuki, Y., Gohongi, T., Fukumura, D., and Jain, R.K., 2002, Role of host microenvironment in angiogenesis and microvascular functions in human breast cancer xenografts: mammary fat pad vs. cranial tumors. Clinical Cancer Research, 8:1008–1013.

    PubMed  Google Scholar 

  10. Jain, R.K., Brown, E.B., Munn, L.L., and Fukumura, D., in press, Intravital microscopy of normal and diseased tissues in the mouse. In Live cell imaging: A laboratory manual. Cold Spring Harbor Press.

    Google Scholar 

  11. Fukumura, D., Xavier, R., Sugiura, T., Chen, Y., Park, E., Lu, N., Selig, M., Nielsen, G., Taksir, T., Jain, R.K., et al., 1998, Tumor induction of VEGF promoter in stromal cells. Cell, 94:715–725.

    Article  PubMed  Google Scholar 

  12. Weissleder, R., Tung, C.H., Mahmood, U., and Bogdanov, A.J., 1999, In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat Biotechnol, 17:375–378.

    Article  Google Scholar 

  13. Helmlinger, G., Yuan, F., Dellian, M., and Jain, R.K., 1997, Interstitial pH and pO2 gradients in solid tumors in vivo: high-resolution measurements reveal a lack of correlation. Nature Medicine, 3:177–182.

    Article  PubMed  Google Scholar 

  14. Fukumura, D., Salehi, H.A., Witwer, B., Tuma, R.F., Melder, R.J., and Jain, R.K., 1995, Tumor necrosis factor α-induced leukocyte adhesion in normal and tumor vessels: Effect of tumor type, transplantation site, and host strain. Cancer Research, 55:4824–4829.

    PubMed  Google Scholar 

  15. Jain, R.K., Munn, L.L., Fukumura, D., and Melder, R.J., 1998, In vitro and in vivo quaqntification of adhesion between leukocytes and vascular endothelium. In Methods in molecular medicine, Tissue Engineering methods and protocols. 18:553–575. J.R. Morgan, and M.L. Yarmush, ed, Totowa: Humana Press Inc..

    Google Scholar 

  16. Brown, E., McKee, T., di Tomaso, E., Seed, B., Boucher, Y., and Jain, R.K., 2003, Dynamic imaging of collagen and its modulation in tumors in vivo using second harmonic generation. Nature Medicine, 9:796–800.

    Article  PubMed  Google Scholar 

  17. Jain, R.K., Munn, L.L., and Fukumura, D., 2001, Transparent window models and intravital microscopy. In Tumor models in cancer research. B.A. Teicher, ed, 647–671. Totowa: Humana Press Inc.

    Google Scholar 

  18. Brown, E.B., Campbell, R.B., Tsuzuki, Y., Xu, L., Carmeliet, P., Fukumura, D., and Jain, R.K., 2001, In vivo measurement of gene expression, angiogenesis, and physiological function in tumors using multiphoton laser scanning microscopy. Nature Medicine, 7:864–868.

    Article  PubMed  Google Scholar 

  19. Morikawa, S., Baluk, P., Kaidoh, T., Haskell, A., Jain, R.K., and McDonald, D.M., 2002, Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. American Journal of Pathology, 160:985–1000.

    PubMed  Google Scholar 

  20. Jain, R.K., 1998, The next frontier of molecular medicine: delivery of therapeutics. Nature Medicine, 4:655–657.

    Article  PubMed  Google Scholar 

  21. Padera, T.P., Stoll, B.R., Tooredman, J.B., Capen, D., di Tomaso, E., and Jain, R.K., 2004, Cancer cells compress intratumor vessels. Nature, 427:695.

    Article  PubMed  Google Scholar 

  22. Padera, T.P., Kadambi, A., diTomaso, E., Carreira, C.M., Brown, E.B., Munn, L.L., and Jain, R.K., 2002, Lymphatic metastasis in the absence of functional intratumor lymphatics. Science, 296:1883–1886.

    Article  PubMed  Google Scholar 

  23. Tong, R., Boucher, Y., Kozin, S.V., Winkler, F., Hincklin, D.J., and Jain, R.K., 2004, Vessel normalization by VEGFR-2 blockade lowers interstitial hypertension and improves drug penetration in tumors. Cancer Research, 64:3731–3736.

    Article  Google Scholar 

  24. Alitalo, K., and Carmeliet, P., 2002, Molecular mechanisms of lymphangiogenesis in health and disease. Cancer Cell, 1:219–227.

    Article  PubMed  Google Scholar 

  25. Isaka, N., Padera, T.P., Hagendoorn, J., Fukumura, D., and Jain, R.K., 2004, Peritumor lymphatics induced by vascular endothelial growth factor-C exhibit abnormal function. Cancer Research, 64:4400–4404.

    Article  PubMed  Google Scholar 

  26. Folkman, J., 2000, Tumor angiogenesis. In Cancer Medicine, 5th Edition, J.F. Holand, E.I. Frei, R.C.J. Bast, D.W. Kufe, P.E. Pollock, and R.R. Weichselbauum, eds, 132–152. Decker Inc., Ontario, B.C.

    Google Scholar 

  27. Kerbel, R., and Folkman, J., 2002, Clinical translation of angiogenesis inhibitors. Nature Reviews Cancer, 2:727–739.

    Article  PubMed  Google Scholar 

  28. Yancopoulos, G.D., Davis, S., Gale, N.W., Rudge, J.S., Wiegand, S.J., and Holash, J., 2000, Vascular-specific growth factors and blood vessel formation. Nature, 407:242–248.

    Article  Google Scholar 

  29. Ferrara, N., Gerber, H.P., and LeCouter, J., 2003, The biology of VEGF and its receptors. Nature Medicine, 9:669–676.

    Article  PubMed  Google Scholar 

  30. Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Berlin, J., Baron, A., Griffing, S., Holmgren, E., et al., 2004, Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med, 350:2335–2342.

    Article  PubMed  Google Scholar 

  31. Dvorak, H.F., 2002, Vascular permeability factor/vascular endothelial growth factor: a critical cytokine in tumor angiogenesis and a potential target for diagnosis and therapy. Journal of Clinical Oncology, 20:4368–4380.

    Article  PubMed  Google Scholar 

  32. Fulton, D., Gratton, J.-P., McCabe, T.J., Fontana, J., Fujio, Y., Walsh, K., Franke, T.F., Papapetropoulos, A., and Sessa, W.C., 1999, Regulation of endothelium-derived nitric oxide production by the protein kinase Akt. Nature, 399:597–601.

    Article  PubMed  Google Scholar 

  33. Alon, T., Hemo, I., Itin, A., and Pe'er, J., 1995, Vascular endothelial growth factor acts as a survival factor for newly formed retinal vessels and has implications for retinopathy of prematurity. Nature Medicine, 1:1024–1028.

    Article  PubMed  Google Scholar 

  34. 2001, Causes and consequences of acidic pH in tumors. Gillies, R.J., ed, John Eiley & Sons Ltd., West Sussex.

    Google Scholar 

  35. Harris, A.L., 2002, Hypoxia — A key regulatory factor in tumor growth. Nat Rev Cancer, 2:38–47.

    Article  PubMed  Google Scholar 

  36. Brown, J.M., and Giaccia, A.J., 1998, The unique physiology of solid tumors: Opportunities (and problems) for cancer therapy. Cancer Res, 58:1408–1416.

    PubMed  Google Scholar 

  37. Tannock, I.F., and Rotin, D., 1989, Acid pH in tumors and its potential for therapeutic exploitation. Cancer Res, 49:4373–4384.

    PubMed  Google Scholar 

  38. Skarsgard, L.D., Skwarchuk, M.W., Vinczan, A., Kristl, J., and Chaplin, D.J., 1995, The cytotoxicity of melphalan and its relationship to pH, hypoxia and drug uptake. Anticancer Res, 15:219–224.

    PubMed  Google Scholar 

  39. Wike-Hooley, J.L., Haveman, J., and Rheinhold, H.S., 1984, The relevance of tumor pH to the treatment of malignant disease. Radiother Oncol, 2:343–366.

    PubMed  Google Scholar 

  40. Semenza, G.L., 2003, Targeting HIF-1 for cancer therapy. Nat Rev Cancer, 3:721–732.

    Article  PubMed  Google Scholar 

  41. Carmeliet, P., Dor, Y., Herbert, J.M., Fukumura, D., Brusselmans, K., Dewerchin, M., Neeman, M., Bono, F., Abramovitch, R., Maxwell, P., et al., 1998, Role of HIF-1á in hypoxia-mediated apoptosis, cell proliferation and tumour angiogenesis. Nature, 394:485–490.

    Article  PubMed  Google Scholar 

  42. Xu, L., Pathak, P.S., Jain, R.K., and Fukumura, D., 2004, Hypoxia-induced activation of p38 mitogen-activated protein kinase and phosphatidylinositol 3′-kinase signaling pathways contributes to expression of interleukin-8 in human ovarian carcinoma cells. Clinical Cancer Research, 10:701–707.

    Article  Google Scholar 

  43. Waleh, N.S., Brody, M.D., Knapp, M.A., Mendonca, H.L., Lord, E.M., Koch, C.J., Laderoute, K.R., and Sutherland, R.M., 1995, Mapping of the vascular endothelial growth factor-producing hypoxic cells in multicellular tumor spheroids using a hypoxia-specific marker. Cancer Res, 55:6222–6226.

    PubMed  Google Scholar 

  44. Shweiki, D., Itin, A., Soffer, D., and Keshet, E., 1992, Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature, 359:843–845.

    Article  PubMed  Google Scholar 

  45. Hanahan, D., and Folkman, J., 1996, Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell, 86:353–364.

    Article  PubMed  Google Scholar 

  46. Raleigh, J.A., Calkins-Adams, D.P., Rinker, L.H., Ballenger, C.A., Weissler, M.C., Fowler, W.C.J., Novotony, D.B., and Varia, M.A., 1998, Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinoma using pimonidazole as a hypoxia marker. Cancer Res, 58:3765–3768.

    PubMed  Google Scholar 

  47. Vaupel, P.W., 1993, Oxygenation of solid tumors. In Drug resistance in oncology. B. Teicher, ed, 53–85 Dekker, M., Inc., New York, NY.

    Google Scholar 

  48. Jensen, J.A., Hunt, T.K., Scheuenstuhl, H., and Banda, M.J., 1986, Effect of lactate, pyruvate and pH on the secretion of angiogenesis and mitogenesis factors by macrophages. Lab Invest, 54:574–578.

    PubMed  Google Scholar 

  49. Xie, K., Huang, S., Xu, L., and Fidler, I.J., 1998, Molecular mechanisms for the regulation of vascular endothelial growth factor expression by extracellular and intracellular pH. Proceedings of American Association of Cancer Research, 39:378.

    Google Scholar 

  50. Martin, G.R., and Jain, R.K., 1993, Fluorescence ratio imaging measurement of pH gradients: calibration and application in normal and tumor tissues. Microvasc Res, 46:216–230.

    Article  PubMed  Google Scholar 

  51. Torres-Filho, I.P., Leunig, M., Yuan, F., Intaglietta, M., and Jain, R.K., 1994, Noninvasive measurement of microvascular and interstitial oxygen profiles in a human tumor in SCID mice. Proc Natl Acad Sci USA, 91:2081–2085.

    PubMed  Google Scholar 

  52. Fukumura, D., Xu, L., Chen, Y., Gohongi, T., Seed, B., and Jain, R.K., 2001, Hypoxia and acidosis independently up-regulate vascular endothelial growth factor transcription in brain tumors in vivo. Cancer Research, 61:6020–6024.

    PubMed  Google Scholar 

  53. Xu, L., Fukumura, D., and Jain, R.K., 2002, Acidic extracellular pH induces vascular endothelial growth factor (VEGF) in human glioblastoma cells via ERK1/2 MAPK signaling pathway. Mechanism of low pH induced VEGF. Journal of Biological Chemistry, 277:11368–11374.

    Article  PubMed  Google Scholar 

  54. Hanahan, D., and Weinberg, R.A., 2000, The hallmarks of cancer. Cell, 100:57–70.

    Article  PubMed  Google Scholar 

  55. Elenbaas, B., and Weinberg, R.A., 2001, Heterotypic signaling beteen epithelial tumor cells and fibroblasts in carcinoma formation. Experimental Cell Research, 264:169–184.

    PubMed  Google Scholar 

  56. Liotta, L.A., and Kohn, E.C., 2001, The microenvironment of the tumour—host interface. Nature, 411:375–379.

    Article  PubMed  Google Scholar 

  57. Ruiter, D.J., van Krieken, J.H., van Muijen, G.N., and de Waal, R.M., 2001, Tumour metastasis: is tissue an issue? Lancet Oncology, 2:109–112.

    Article  PubMed  Google Scholar 

  58. Li, G., Satyamoorthy, K., Meier, F., Berking, C., Bogenrieder, T., and Herlyn, M., 2003, Function and regulation of melanoma—stromal fibroblast interactions: when seeds meet soil. Oncogene, 22:3162–3171.

    Article  PubMed  Google Scholar 

  59. Pollard, J.W., 2004, Tumour-educated macrophages promote tumour progression and metastasis. Nat rev Cancer, 4:71–78.

    Article  PubMed  Google Scholar 

  60. Tlsty, T.D., 2001, Stromal cells can contribute oncogenic signals. Cancer Biology, 11:97–104.

    Article  Google Scholar 

  61. Noel, A., De Pauw-Gillet, M.C., Purnell, G., Nusgens, B., Lapiere, C.M., and Foidart, J.M., 1993, Enhancement of tumorigenicity of human breast adenocarcinoma cells in nude mice by matrigel and fibroblasts. British Journal of Cancer, 68:909–915.

    PubMed  Google Scholar 

  62. Dublin, E., Hanby, A., Patel, N.K., Liebman, R., and Barnes, D., 2000, Immunohistochemical expression of uPA, uPAR, and PAI-1 in breast carcinoma: Fibroblastic expression has strong association with tumor pathology. Am J Pathol, 157:1219–1227.

    PubMed  Google Scholar 

  63. Tsuzuki, Y., Fukumura, D., Oosthuyse, B., Koike, C., Carmeliet, P., and Jain, R.K., 2000, Vascular endothelial growth factor (VEGF) modulation by targeting hypoxia inducible factor-1α → Hypoxia response element →VEGF cascade differentially regulates vascular response and growth rate in tumors. Cancer Research, 60:6248–6252.

    PubMed  Google Scholar 

  64. Izumi, Y., Xu, L., diTomaso, E., Fukumura, D., and Jain, R.K., 2002, Herceptin acts as an antiangiogenic cocktail. Nature, 416:279–280.

    Article  Google Scholar 

  65. Hansen-Algenstaedt, N., Stoll, B.R., Padera, T.P., Dolmans, D.E.G.J., Hicklin, D.J., Fukumura, D., and Jain, R.K., 2000, Tumor oxygenation in hormone-dependent tumors during vascular endothelial growth factor receptor-2 blockage, hormone ablation, and chemotherapy. Cancer Research, 60:4556–4560.

    PubMed  Google Scholar 

  66. Dolmans, D.E.J.G.J., Xu, L., Fukumura, D., and Jain, R.K., 2003, Host versus tumor derived vascular endothelial growth factor after photodynamic therapy. Proceedings American Association for Cancer Research, 44:6.

    Google Scholar 

  67. Wang, T.N., Albo, D., and Tuszynski, G.P., 2002, Fibroblasts promote breast cancer cell invasin by upregulating tumor matrix metalloproteinase-9 production. Surgery, 132:220–225.

    Article  Google Scholar 

  68. Hasebe, T., Sasaki, S., Imoto, S., and Ochiai, A., 2000, Proliferative activity of intratumoral fibroblasts is closely correlated with lymph node and distant organ metastases of invasive ductal carcinoma of the breast. American Journal of Pathology, 156:1701–1710.

    PubMed  Google Scholar 

  69. Duda, D.G., Fukumura, D., Munn, L.L., Booth, M.F., Huang, P., Seed, B., and Jain, R.K., 2004, Differential transplantability of tumor-associated stromal cells: endothelial vs. non-endothelial cells. Cancer Res, in press.

    Google Scholar 

  70. Glaves, D., 1983, Correlation between circulating cancer cells and incidence of metastasis. Br J Cancer, 48:665–673.

    PubMed  Google Scholar 

  71. Fidler, I.J., 1973, The relationship of embolic homgeneity, number, size and viability to the incidence of experimental metastasis. European Journal of Cancer, 9:223–227.

    PubMed  Google Scholar 

  72. Liotta, L.A., Saidel, M.G., and Kleinerman, J., 1976, The significance of hematogeneous tumor cell clumps in the metastatic process. Cancer Res, 36:889–894.

    PubMed  Google Scholar 

  73. Picard, O., Rolland, Y., and Poupon, M.F., 1986, Fibroblast-dependent tumorigenicity of cells in nude mice: Implication for implantation of metastasis. Cancer Res, 46:3290–3294.

    PubMed  Google Scholar 

  74. Fidler, I.J., 2001, Angiogenic heterogenity: regulation of neoplastic angiogenesis by the organ microenvironment. Journal of the National Cancer Institute, 93:1040–1041.

    Article  Google Scholar 

  75. Paget, S., 1889, The distribution of secondary growths in cancer of the breast. Lancet, 1:571–573.

    Article  Google Scholar 

  76. Fidler, I.J., 1995, Modulation of the organ microenvironment for treatment of cancer metastasis. Journal of the National Cancer Institute, 87:1588–1592.

    PubMed  Google Scholar 

  77. Helmlinger, G., Netti, P.A., Lichtenbeld, H.C., Melder, R.J., and Jain, R.K., 1997 Solid stress inhibits the growth of multicellular tumor spheroids. Nat Biotech, 15:778–783.

    Article  Google Scholar 

  78. Kerbel, R.S., 1995, Significance of tumor-host interactions in cancer growth and metastasis. Cancer and Metastasis Reviews, 259–262.

    Google Scholar 

  79. Singh, R.K., Bucana, C.D., Gutman, M., Fan, D., Wilsaon, M.R., and Fidler, I.J., 1994, Organ site-dependent expression of basic fibroblast growth factor in human renal cell carcinoma cells. American Journal of Pathology, 145:365–374.

    PubMed  Google Scholar 

  80. Gutman, M., Singh, R.K., Xie, K., Bucana, C.D., and Fidler, I.J., 1995, Regulation of interleukin-8 expression in human melanoma cells by the organ environment. Cancer Research, 55:2470–2475.

    PubMed  Google Scholar 

  81. Kitadai, Y., Bucana, C.D., Ellis, L.M., Anzai, H., Tahara, E., and Fidler, I.J., 1995, In situ mRNA hybridization technique for analysis of metastasis-related genes in human colon carcinoma cells. American Journal of Pathology, 147:1238–1247.

    PubMed  Google Scholar 

  82. Dellian, M., Witwer, B.P., Salehi, H.A., Yuan, F., and Jain, R.K., 1996, Quantitation and physiological characterization of angiogenic vessels in mice: Effect of basic fibroblast growth factor, vascular endothelial growth factor/vascular permeability factor, and host microenvironment. Am J Pathol, 149:59–72.

    PubMed  Google Scholar 

  83. Hobbs, S.K., Monsky, W.L., Yuan, F., Roberts, G., Griffith, L., Torchillin, V., and Jain, R.K., 1998, Regulation of transport pathways in tumor vessels: role of tumor type and host microenvironment. Proceedings of the National Academy of Sciences of the United States of America, 95:4607–4612.

    Article  PubMed  Google Scholar 

  84. Monsky, W.L., Fukumura, D., Gohongi, T., Ancukiewcz, M., Weich, H.A., Torchilin, V.P., Yuan, F., and Jain, R.K., 1999, Augmentation of transvascular transport of macromolecules and nanoparticles in tumors using vascular endothelial growth factor. Cancer Research, 59:4129–4135.

    PubMed  Google Scholar 

  85. Pluen, A., Boucher, Y., Ramanujan, S., McKee, T.D., Gohongi, T., diTomasso, E., Brown, E.B., Izumi, Y., Campbell, R.B., Berk, D.A., et al., 2001, Role of tumor-host interactions in interstitial diffusion of macromolecules: Cranial vs. subcutaneous tumors. Proceedings of the National Academy of Sciences of the United States of America, 98:4628–4633.

    Article  PubMed  Google Scholar 

  86. Jain, R.K., Yuan, F., Brown, L.F., Detmar, M., and Dvorak, H.F. 2001. Relationship between VPF/VEGF and vascular permeability in tumors is host-organ dependent. Microvas Res submitted.

    Google Scholar 

  87. Hartford, A.C., Gohongi, T., Fukumura, D., and Jain, R.K., 2000, Irradiation of a primary tumor, unlike surgical removal, enhances angiogenesis suppression at a distal site: Potential role of host-tumor interaction. Cancer Res, 60:2128–2131.

    PubMed  Google Scholar 

  88. Jain, R.K., 1997, The Eugene M. Landis Award Lecture. Delivery of molecular and cellular medicine to solid tumors. Microcirculation, 4:1–23.

    PubMed  Google Scholar 

  89. Hobbs, S.K., Yuan, F., Griffith, L., and Jain, R.K., 1997, Pore cutoff size of tumor microvessels: Effect of tumor type, treatment, and host microenvironment. Proceedings of American Association of Cancer Research, 38:263–264.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Fukumura, D. (2005). Role of Microenvironment on Gene Expression, Angiogenesis and Microvascular Function in Tumors. In: Meadows, G.G. (eds) Integration/Interaction of Oncologic Growth. Cancer Growth and Progression, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3414-8_2

Download citation

Publish with us

Policies and ethics