Skip to main content

Bone Metastasis Microenvironment Participates in the Development of Androgen Ablation Refractoriness and Chemotherapy Resistance of Prostate Cancer Cells Residing in the Skeleton: Clinical Implications

  • Chapter

Part of the book series: Cancer Growth and Progression ((CAGP,volume 15))

Abstract

The development of resistance to anti-cancer therapies is a major hurdle preventing long-lasting clinical responses to conventional or investigational therapies in hormone refractory prostate cancer. Herein, we analyze the molecular evidence which show that bone metastasis microenvironment survival factors, mainly paracrine, growth hormone (GH)-independent, urokinase-type plasminogen activator (uPA)-mediated production of insulin-like growth factor 1 (IGF-1) and endocrine, GH-dependent production of IGF-1 (mainly liver-derived IGF-1), produce an epigenetic form of cancer cells resistance to pro-apoptotic therapies. In addition, we review the conceptual framework of a novel hormone manipulation for hormone refractory metastatic prostate cancer (combination of dexamethasone and somatostatin analog (SM-A)), which yielded durable objective responses and major improvement of bone pain and performance status in stage D3 prostate cancer patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Soloway, M.S., et al., 1988, Stratification of patients with metastatic prostate cancer based on extent of disease on initial bone scan. Cancer, 61(1): 195–202.

    PubMed  Google Scholar 

  2. Mohla, S., et al., 2003, Third North American Symposium on Skeletal Complications of Malignancy: summary of the scientific sessions. Cancer, 97(3 Suppl):719–25.

    Article  PubMed  Google Scholar 

  3. McMurtry, C.T., and McMurtry, J.M., 2003, Metastatic prostate cancer: complications and treatment. J Am Geriatr Soc, 51(8):1136–42.

    Article  PubMed  Google Scholar 

  4. Pollen, J.J., and Schmidt, J.D., 1979, Bone pain in metastatic cancer of prostate. Urology, 13(2):129–34.

    Article  Google Scholar 

  5. Ruff, R.L. and Lanska, D.J., 1989, Epidural metastases in prospectively evaluated veterans with cancer and back pain. Cancer, 63(11):2234–41.

    PubMed  Google Scholar 

  6. Liskow, A., et al., 1986, Epidural cord compression in association with genitourinary neoplasms. Cancer, 58(4):949–54.

    PubMed  Google Scholar 

  7. Benjamin, R., 2002, Neurologic complications of prostate cancer. Am Fam Physician, 65(9):1834–40.

    PubMed  Google Scholar 

  8. De, S., et al., 2003, Molecular pathway for cancer metastasis to bone. J Biol Chem, 278(40):39044–50.

    Article  Google Scholar 

  9. Eaton, C.L. and Coleman, R.E., 2003, Pathophysiology of bone metastases from prostate cancer and the role of bisphosphonates in treatment. Cancer Treat Rev, 29(3):189–98.

    PubMed  Google Scholar 

  10. David, A.K., Khwaja R., and Hudes, G.R., 2003, Treatments for improving survival of patients with prostate cancer. Drugs Aging, 20(9):683–99.

    PubMed  Google Scholar 

  11. Bogdanos, J., et al., 2003, Endocrine/paracrine/autocrine survival factor activity of bone microenvironment participates in the development of androgen ablation and chemotherapy refractoriness of prostate cancer metastasis in skeleton. Endocr Relat Cancer, 10(2):279–89.

    Article  Google Scholar 

  12. Mitsiades, C.S. and Koutsilieris, M., 2001, Molecular biology and cellular physiology of refractoriness to androgen ablation therapy in advanced prostate cancer. Expert Opin Investig Drugs, 10(6):1099–115.

    Article  PubMed  Google Scholar 

  13. Reddi, A.H., et al., 2003, Mechanisms of tumor metastasis to the bone: challenges and opportunities. J Bone Miner Res, 18(2):190–4.

    PubMed  Google Scholar 

  14. Kumar, C.C., 2003, Integrin alpha v beta 3 as a therapeutic target for blocking tumor-induced angiogenesis. Curr Drug Targets, 4(2):123–31.

    Article  PubMed  Google Scholar 

  15. Sweeney, P., et al., 2002, Anti-vascular endothelial growth factor receptor 2 antibody reduces tumorigenicity and metastasis in orthotopic prostate cancer xenografts via induction of endothelial cell apoptosis and reduction of endothelial cell matrix metalloproteinase type 9 production. Clin Cancer Res, 8(8):2714–24.

    PubMed  Google Scholar 

  16. Nemeth, J.A., et al., 2002, Matrix metalloproteinase activity, bone matrix turnover, and tumor cell proliferation in prostate cancer bone metastasis. J Natl Cancer Inst, 94(1):17–25.

    PubMed  Google Scholar 

  17. Scott, L.J., et al., 2001, Interactions of human prostatic epithelial cells with bone marrow endothelium: binding and invasion. Br J Cancer, 84(10):1417–23.

    Article  PubMed  Google Scholar 

  18. Karamanolakis, D., et al., 2002, Molecular evidence-based use of bone resorption-targeted therapy in prostate cancer patients at high risk for bone involvement. Mol Med, 8(11):667–75.

    PubMed  Google Scholar 

  19. Fidler, I.J. 1990, Critical factors in the biology of human cancer metastasis: twenty-eighth G.H.A. Cloes memorial award lecture. Cancer Res, 50(19):6130–8.

    PubMed  Google Scholar 

  20. Liotta, L.A., Kleinerman, J., Saidel, G.M., 1974, Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmnary metastases following tumor implantation. Cancer Res, 34(5):997–1004.

    PubMed  Google Scholar 

  21. Smith, J.A., 2003, Bone histology at autopsy and matched bone scintigraphy findings in patients with hormone refractory prostate cancer: the effect of bisphosphonate therapy on bone scintigraphy results. Roudier MP, Vesselle H, True LD, Higano CS, Ott SM, King SH, Vessella RL, Department of Urology, University of Washington, Seattle, WA. Clin Exp Metastasis, 20:171–180. Urol Oncol, 21(6):483.

    Google Scholar 

  22. Yu, K.K., and Hawkins, R.A., 2000, The prostate: diagnostic evaluation of metastatic disease. Radiol Clin North Am, 38(1):139–57, ix.

    Article  PubMed  Google Scholar 

  23. Yonou, H., et al., 2004, Intraosseous growth of human prostate cancer in implanted adult human bone: relationship of prostate cancer cells to osteoclasts in osteoblastic metastatic lesions. Prostate, 58(4):406–13.

    Article  PubMed  Google Scholar 

  24. Hsieh, C.L., et al., 2004, Cotargeting tumor and stroma in a novel chimeric tumor model involving the growth of both human prostate cancer and bone stromal cells. Cancer Gene Ther, 11(2):148–55.

    Article  PubMed  Google Scholar 

  25. Mundy, G.R., 1997, Mechanisms of bone metastasis. Cancer, 80(8 Suppl):1546–56.

    Article  PubMed  Google Scholar 

  26. Sugihara, A., et al., 1998, Expression of cytokines enhancing the osteoclast activity, and parathyroid hormone-related protein in prostatic cancers before and after endocrine therapy: an immunohistochemical study. Oncol Rep, 5(6):1389–94.

    PubMed  Google Scholar 

  27. Blomme, E.A., et al., 1999, Skeletal metastasis of prostate adenocarcinoma in rats: morphometric analysis and role of parathyroid hormone-related protein. Prostate, 39(3):187–97.

    Article  PubMed  Google Scholar 

  28. Zhang, J., et al., 2001, Osteoprotegerin inhibits prostate cancer-induced osteoclastogenesis and prevents prostate tumor growth in the bone. J Clin Invest, 107(10):1235–44.

    PubMed  Google Scholar 

  29. Shah, A.H., et al., 2002, Suppression of tumor metastasis by blockade of transforming growth factor beta signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res, 62(24):7135–8.

    PubMed  Google Scholar 

  30. Fizazi, K., et al., 2003, Prostate cancer cells-osteoblast interaction shifts expression of growth/survival-related genes in prostate cancer and reduces expression of osteoprotegerin in osteoblasts. Clin Cancer Res, 9(7):2587–97.

    PubMed  Google Scholar 

  31. Koutsilieris, M., Rabbani, S.A., and Goltzman, D., 1986, Selective osteoblast mitogens can be extracted from prostatic tissue. Prostate, 9(2):109–15.

    PubMed  Google Scholar 

  32. Koutsilieris, M., et al., 1987, Characteristics of prostate-derived growth factors for cells of the osteoblast phenotype. J Clin Invest, 80(4):941–6.

    PubMed  Google Scholar 

  33. Killian, C.S., et al., 1993, Mitogenic response of osteoblast cells to prostate-specific antigen suggests an activation of latent TGF-beta and a proteolytic modulation of cell adhesion receptors. Biochem Biophys Res Commun, 192(2):940–7.

    Article  Google Scholar 

  34. Koutsilieris, M., 1993, Osteoblastic metastasis in advanced prostate cancer. Anticancer Res, 13(2):443–9.

    PubMed  Google Scholar 

  35. Ware, J.L., 1993, Growth factors and their receptors as determinants in the proliferation and metastasis of human prostate cancer. Cancer Metastasis Rev, 12(3–4):287–301.

    Article  PubMed  Google Scholar 

  36. Lang, S.H., Miller, W.R., and Habib, F.K., 1995, Stimulation of human prostate cancer cell lines by factors present in human osteoblast-like cells but not in bone marrow. Prostate, 27(5):287–93.

    PubMed  Google Scholar 

  37. Burfeind, P., et al., 1996, Antisense RNA to the type I insulin-like growth factor receptor suppresses tumor growth and prevents invasion by rat prostate cancer cells in vivo. Proc Natl Acad Sci U S A, 93(14):7263–8.

    Article  PubMed  Google Scholar 

  38. Martinez, J., Silva, S., and Santibanez, J.F., 1996, Prostate-derived soluble factors block osteoblast differentiation in culture. J Cell Biochem, 61(1):18–25.

    Article  PubMed  Google Scholar 

  39. Ritchie, C.K., et al., 1997, The effects of growth factors associated with osteoblasts on prostate carcinoma proliferation and chemotaxis: implications for the development of metastatic disease. Endocrinology, 138(3):1145–50.

    Article  PubMed  Google Scholar 

  40. Festuccia, C., et al., 1999, Osteoblasts modulate secretion of urokinase-type plasminogen activator (uPA) and matrix metalloproteinase-9 (MMP-9) in human prostate cancer cells promoting migration and matrigel invasion. Oncol Res, 11(1):17–31.

    PubMed  Google Scholar 

  41. Koeneman, K.S., Yeung, F., and Chung, L.W., 1999, Osteomimetic properties of prostate cancer cells: a hypothesis supporting the predilection of prostate cancer metastasis and growth in the bone environment. Prostate, 39(4):246–61.

    Article  PubMed  Google Scholar 

  42. Bissell, M.J., Le Beyec, J., and Anderson, R.L., 2002, Prostate cancer in bone: importance of context for inhibition of matrix metalloproteinases. J Natl Cancer Inst, 94(1):4–5.

    PubMed  Google Scholar 

  43. Shariat, S.F., et al., 2002, Association of preoperative plasma levels of insulin-like growth factor I and insulin-like growth factor binding proteins-2 and-3 with prostate cancer invasion, progression, and metastasis. J Clin Oncol, 20(3):833–41.

    Article  PubMed  Google Scholar 

  44. Bratland, A., et al., 2003, The metalloproteinase inhibitor TIMP-2 is down-regulated by androgens in LNCaP prostate carcinoma cells. Clin Exp Metastasis, 20(6):541–7.

    PubMed  Google Scholar 

  45. Mohammad, K.S. and Guise, T.A., 2003, Mechanisms of osteoblastic metastases: role of endothelin-1. Clin Orthop, (415Suppl):S67–74.

    PubMed  Google Scholar 

  46. Uehara, H., et al., 2003, Effects of blocking platelet-derived growth factor-receptor signaling in a mouse model of experimental prostate cancer bone metastases. J Natl Cancer Inst, 95(6):458–70.

    PubMed  Google Scholar 

  47. Guise, T.A. and Mohammad, K.S., 2004, Endothelins in bone cancer metastases. Cancer Treat Res, 118:197–212.

    PubMed  Google Scholar 

  48. LeRoy, B.E., Sellers, R.S., and Rosol, T.J., 2004, Canine prostate stimulates osteoblast function using the endothelin receptors. Prostate, 59(2):148–56.

    Article  PubMed  Google Scholar 

  49. Masuda, H., et al., 2004, Expression of bone morphogenetic protein-7 (BMP-7) in human prostate. Prostate, 59(1):101–6.

    Article  PubMed  Google Scholar 

  50. Koutsilieris, M., Mitsiades, C., and Sourla, A., 2000, Insulin-like growth factor I and urokinase-type plasminogen activator bioregulation system as a survival mechanism of prostate cancer cells in osteoblastic metastases: development of antisurvival factor therapy for hormone-refractory prostate cancer. Mol Med, 6(4):251–67.

    PubMed  Google Scholar 

  51. Koutsilieris, M., et al., 1997, Growth factors mediate glucocorticoid receptor function and dexamethasone-induced regression of osteoblastic lesions in hormone refractory prostate cancer. Anticancer Res, 17(3A):1461–5.

    PubMed  Google Scholar 

  52. Achbarou, A., et al., 1994, Urokinase overproduction results in increased skeletal metastasis by prostate cancer cells in vivo. Cancer Res, 54(9):2372–7.

    PubMed  Google Scholar 

  53. Goltzman, D., 1997, Mechanisms of the development of osteoblastic metastases. Cancer, 80(8 Suppl):1581–7.

    Article  PubMed  Google Scholar 

  54. Mundy, G.R., 2002, Metastasis to bone: causes, consequences and therapeutic opportunities. Nat Rev Cancer, 2(8):584–93.

    Article  PubMed  Google Scholar 

  55. Tso, C.L., et al., 2000, Androgen deprivation induces selective outgrowth of aggressive hormone-refractory prostate cancer clones expressing distinct cellular and molecular properties not present in parental androgen-dependent cancer cells. Cancer J, 6(4):220–33.

    PubMed  Google Scholar 

  56. Brubaker, K.D., et al., 2003, Prostate cancer expression of runt-domain transcription factor Runx2, a key regulator of osteoblast differentiation and function. Prostate, 56(1):13–22.

    Article  PubMed  Google Scholar 

  57. Reese, D.M., et al., 2001, HER2 protein expression and gene amplification in androgen-independent prostate cancer. Am J Clin Pathol, 116(2):234–9.

    Article  Google Scholar 

  58. Shariat, S.F., et al., 2001, Plasma levels of interleukin-6 and its soluble receptor are associated with prostate cancer progression and metastasis. Urology, 58(6):1008–15.

    Article  PubMed  Google Scholar 

  59. George, D.J., 2002, Receptor tyrosine kinases as rational targets for prostate cancer treatment: platelet-derived growth factor receptor and imatinib mesylate. Urology, 60(3 Suppl 1):115–21; discussion 122.

    Article  Google Scholar 

  60. Kim, S.J., et al., 2003, Blockade of epidermal growth factor receptor signaling in tumor cells and tumor-associated endothelial cells for therapy of androgen-independent human prostate cancer growing in the bone of nude mice. Clin Cancer Res, 9(3):1200–10.

    PubMed  Google Scholar 

  61. Zayzafoon, M., Abdulkadir, S.A., and McDonald, J.M., 2004, Notch signaling and ERK activation are important for the osteomimetic properties of prostate cancer bone metastatic cell lines. J Biol Chem, 279(5):3662–70.

    Article  PubMed  Google Scholar 

  62. Lee H-L, et al., 2002, The effect of growth factors and cytokines on the growth of androgen sensitive and insensitive human prostate cancer cells in vitro. Pro Am Asso Cancer Res, 43:187

    Google Scholar 

  63. Reyes-Moreno, C., et al., 1998, Osteoblast-derived survival factors protect PC-3 human prostate cancer cells from adriamycin apoptosis. Urology, 52(2):341–7.

    Article  PubMed  Google Scholar 

  64. Koutsilieris, M., Tzanela, M., and Dimopoulos, T., 1999, Novel concept of antisurvival factor (ASF) therapy produces an objective clinical response in four patients with hormone-refractory prostate cancer: case report. Prostate, 38(4):313–6.

    Article  PubMed  Google Scholar 

  65. Cheville, J.C., et al., 2002, Metastatic prostate carcinoma to bone: clinical and pathologic features associated with cancer-specific survival. Cancer, 95(5):1028–36.

    Article  Google Scholar 

  66. Tenta, R., et al., 2004, Bone microenvironment-related growth factors modulate differentially the anticancer actions of zoledronic acid and doxorubicin on PC-3 prostate cancer cells. Prostate, 59(2):120–31.

    Article  PubMed  Google Scholar 

  67. Hullinger, T.G., et al., 1998, Effect of bone proteins on human prostate cancer cell lines in vitro. Prostate, 36(1):14–22.

    Article  PubMed  Google Scholar 

  68. Koutsilieris, M., et al., 2001, A combination therapy of dexamethasone and somatostatin analog reintroduces objective clinical responses to LHRH analog in androgen ablation-refractory prostate cancer patients. J Clin Endocrinol Metab, 86(12):5729–36.

    Article  PubMed  Google Scholar 

  69. Koutsilieris, M., et al., 2002, Combination of dexamethasone and a somatostatin analogue in the treatment of advanced prostate cancer. Expert Opin Investig Drugs, 11(2):283–93.

    Article  PubMed  Google Scholar 

  70. Hsieh, C.L., Kubo, H., and Chung, L.W., 2004, Gene therapy for prostate cancer bone metastasis. Gene therapy targeting bone metastasis. Cancer Treat Res, 118:231–90.

    PubMed  Google Scholar 

  71. Dimopoulos, M.A., et al., 2004, Combination of LHRH analog with somatostatin analog and dexamethasone versus chemotherapy in hormone-refractory prostate cancer: a randomized phase II study. Urology, 63(1):120–5.

    Article  PubMed  Google Scholar 

  72. Akakura, K., et al., 2003, Possible mechanism of dexamethasone therapy for prostate cancer: suppression of circulating level of interleukin-6. Prostate, 56(2):106–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Koutsilieris, M. et al. (2005). Bone Metastasis Microenvironment Participates in the Development of Androgen Ablation Refractoriness and Chemotherapy Resistance of Prostate Cancer Cells Residing in the Skeleton: Clinical Implications. In: Meadows, G.G. (eds) Integration/Interaction of Oncologic Growth. Cancer Growth and Progression, vol 15. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3414-8_19

Download citation

Publish with us

Policies and ethics