Skip to main content

Unified Modelling Theories for the Dynamics of Multidisciplinary Multibody Systems

  • Chapter

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 2))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Biggs N, Lloyd E, Wilson R (1976) Graph Theory: 1736–1936. Oxford University Press, Oxford

    Google Scholar 

  2. Breedveld P, Dauphin-Tanguy G (1992) Bond Graphs for Engineers. Elsevier Science, Amsterdam

    Google Scholar 

  3. Crandall S, Karnopp D, Kurtz E, Pridmore-Brown D (1968) Dynamics of Mechanical and Electromechanical Systems. McGraw-Hill, New York

    Google Scholar 

  4. Gayford M (1971) Electroacoustics — Microphones, Earphones and Loudspeakers. Elsevier Publishing Company, New York

    Google Scholar 

  5. Karnopp D, Margolis D, Rosenberg R (2000) System Dynamics: Modeling and Simulation of Mechatronic Systems. John Wiley and Sons, New York

    Google Scholar 

  6. Koenig H, Tokad Y, Kesavan H (1967) Analysis of Discrete Physical Systems. McGraw-Hill, New York

    Google Scholar 

  7. Muegge B (1996) Graph-Theoretic Modelling and Simulation of Planar Mechatronic Systems. University of Waterloo, Canada

    Google Scholar 

  8. Norton R (2001) Design of Machinery, 2nd ed. McGraw-Hill, New York

    Google Scholar 

  9. Paynter H (1961) Analysis and Design of Engineering Systems. MIT Press, Cambridge, Massachusetts

    Google Scholar 

  10. Roe P (1966) Networks and Systems. Addison-Wesley, Reading, Massachusetts

    Google Scholar 

  11. Rowell D, Wormley D (1997) System Dynamics: An Introduction. Prentice Hall, New Jersey

    Google Scholar 

  12. Thoma J (1975) Introduction to Bond Graphs and their Applications. Pergamon Press, Oxford

    Google Scholar 

  13. Sass L, Fisette P, Grenier D (2002) Modelling of mechatronic systems — study of the actuation of a swinging barrier. In: Proceedings of The 8th Mechatronics Forum International Conference, University of Twente, Enschede, Netherlands

    Google Scholar 

  14. Birkett S, Roe P (1990) The Mathematical Foundations of Bond Graphs-III. Matroid Theory. J Frank Inst 327(1):87–108

    MathSciNet  Google Scholar 

  15. Favre W, Scavarda S (1998) Bond Graph Representation of Multibody Systems with Kinematic Loops. J Frank Inst 335B(4):643–660

    MathSciNet  Google Scholar 

  16. Fisette P, Postiau T, Sass L, Samin J-C (2002) Fully Symbolic Generation of Complex Multibody Models. Mech Struct Mach 30(1):31–82

    Article  Google Scholar 

  17. Hadwich V, Pfeiffer F (1995) Principle of Virtual Work in Mechanical and Electromechanical Systems. Arch Appl Mech 65:390–400

    Google Scholar 

  18. Jerkovsky W (1978) The structure of multibody dynamics equations. J Guid Control 1(3):173–182

    MATH  Google Scholar 

  19. Karnopp D (1997) Understanding Multibody Dynamics Using Bond Graph Representations. J Frank Inst 334B(4):631–642

    MATH  MathSciNet  Google Scholar 

  20. Kübler R, Schiehlen W (2000) Modular Simulation in Multibody System Dynamics. Multibody Sys Dyn 4:107–127

    Google Scholar 

  21. Lovekin D, Heppler G, McPhee J (2000) Design and Analysis of a Facility for Free-floating Flexible Manipulators. Trans CSME 24(2):375–390

    Google Scholar 

  22. Maisser P, Enge O, Freudenberg H, Kielau G (1997) Electromechanical Interactions in Multibody Systems Containing Electromechanical Drives. Multibody Sys Dyn 1:281–302

    Google Scholar 

  23. McPhee J (1998) Automatic Generation of Motion Equations for Planar Mechanical Systems Using the New Set of “Branch Co-ordinates”. Mech Mach Theory 33(6):805–823

    Article  MATH  MathSciNet  Google Scholar 

  24. McPhee J (1996) On the use of linear graph theory in multibody system dynamics. Nonlin Dyn 9:73–90

    Google Scholar 

  25. Papadopoulos E, Gonthier Y (2002) On the Development of a Real-Time Simulator Engine for a Hydraulic Forestry Machine. Int Journal Fluid Power 3(1):55–65

    Google Scholar 

  26. Perelson A, Oster G (1976) Bond Graphs and Linear Graphs. J Frank Inst 302(2):159–185

    MathSciNet  Google Scholar 

  27. Sass L, McPhee J, Schimitke C, Fisette P, Grenier D (2004) A Comparison of Different Methods for Modelling Electromechanical Multibody Systems. Multibody Sys Dyn 12(3):209–250

    Google Scholar 

  28. Scherrer M, McPhee J (2003) Dynamic Modelling of Electromechanical Multibody Systems. Multibody Sys Dyn 9:87–115

    Google Scholar 

  29. Schmitke C, McPhee J (2003) A Procedure for Modeling Multibody Systems Using Subsystem Models. Int J Multiscale Comp Eng 1(2):139–159

    Google Scholar 

  30. Shi P, McPhee J (2000) Dynamics of Flexible Multibody Systems Using Virtual Work and Linear Graph Theory. Multibody Sys Dyn 4:355–381

    Google Scholar 

  31. Tiernego M, Bos A (1985) Modelling the Dynamics and Kinematics of Mechanical Systems With Multibond Graphs. J Frank Inst 319(1/2):37–50

    Google Scholar 

  32. Trent H (1955) Isomorphisms between linear graphs and lumped physical systems. J Acoust Soc Am 27:500–527

    Article  MathSciNet  Google Scholar 

  33. Zeid A, Chung C-H (1992) Bond Graph Modeling of Multibody Systems: A Library of Three-Dimensional Joints. J Frank Inst 329(4):605–636

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

McPhee, J. (2005). Unified Modelling Theories for the Dynamics of Multidisciplinary Multibody Systems. In: Ambrósio, J.A. (eds) Advances in Computational Multibody Systems. Computational Methods in Applied Sciences, vol 2. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3393-1_6

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3393-1_6

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3392-6

  • Online ISBN: 978-1-4020-3393-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics