Skip to main content

Distributed Coverage of Unknown/Unstructured Environments by Mobile Sensor Networks

  • Conference paper
Multi-Robot Systems. From Swarms to Intelligent Automata Volume III

Abstract

In this paper we present an algorithmic solution for the distributed, complete coverage, path planning problem. Real world applications such as lawn mowing, chemical spill clean-up, and humanitarian de-mining can be automated by the employment of a team of autonomous mobile robots. Our approach builds on a single robot coverage algorithm. A greedy auction algorithm (a market based mechanism) is used for task reallocation among the robots. The robots are initially distributed through space and each robot is allocated a virtually bounded area to cover. Communication between the robots is available without any restrictions.

Work done while at Carnegie Mellon University.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Acar, E. U. and Choset, H. (2000). Critical point sensing in unknown environments. In Proc. of the IEEE International Conference on Robotics & Automation.

    Google Scholar 

  • Batalin, M. A. and Sukhatme, G. S. (2002). Spreading out: A local approach to multi-robot coverage. In 6th International Symposium on Distributed Autonomous Robotics Systems, Fukuoka, Japan.

    Google Scholar 

  • Berhault, M., Huang, H., Keskinocak, P., Koenig, S., Elmaghraby, W., Griffin, P., and Kleywegt, A. (2003). Robot exploration with combinatorial auctions. In IEEE/RSJ Int. Conference on Intelligent Robots and Systems, volume 2, pages 1957–1962.

    Google Scholar 

  • Bruemmer, D. J., Dudenhoeffer, D. D., Anderson, M. O., and McKay, M. D. (2002). A robotic swarm for spill finding and perimeter formation. Spectrum.

    Google Scholar 

  • Butler, Z., Rizzi, A., and Hollis, R. (2001). Distributed coverage of rectilinear environments. In Proc. of the Workshop on the Algorithmic Foundations of Robotics.

    Google Scholar 

  • Choset, H. and Pignon, P. (1997). Coverage path planning: The boustrophedon cellular decomposition. In International Conference on Field and Service Robotics, Canberra, Australia.

    Google Scholar 

  • Dias, M. B. and Stentz, A. T. (2001). A market approach to multirobot coordination. Technical Report CMU-RI-TR-01-26, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Dias, M. B. and Stentz, A. T. (2003). Traderbots: A market-based approach for resource, role, and task allocation in multirobot coordination. Technical Report CMU-RI-TR-03-19, Robotics Institute, Carnegie Mellon University, Pittsburgh, PA.

    Google Scholar 

  • Dias, M. B., Zinck, M., Zlot, R., and Stentz, A. T. (2004). Robust multirobot coordination in dynamic environments. In International Conference on Robotics & Automation, pages 3435–3442, New Orleans, LA.

    Google Scholar 

  • Gerkey, B. and Mataric, M. (2002). Sold!: auction methods for multirobot coordination. IEEE Transactions on Robotics and Automation, 18(5):758–768.

    Google Scholar 

  • Gerkey, B. P., Vaughan, R. T., StÃÿy, K., Howard, A., Sukhatme, G. S., and Mataric, M. J. (2001). Most valuable player: A robot device server for distributed control. In IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2001), pages 1226–1231, Wailea, Hawaii.

    Google Scholar 

  • Goldberg, D., Cicirello, V., Dias, M. B., Simmons, R., Smith, S. F., and Stenz, A. (2003). Market-based multi-robot planning in a distributed layered architecture. In Multi-Robot Systems: From Swarms to Intelligent Automata: Proceedings from the 2003 International Workshop on Multi-Robot Systems, volume 2, pages 27–38. Kluwer Academic Publishers.

    Google Scholar 

  • Ichikawa, S. and Hara, F. (1999). Characteristics of object-searching and object-fetching behaviors of multi-robot system using local communication. In IEEE International Conference on Systems, Man, and Cybernetics, (IEEE SMC ‘99), volume 4, pages 775–781.

    Google Scholar 

  • Kurabayashi, D., Ota, J., Arai, T., and Yoshida, E. (1996). Cooperative sweeping by multiple mobile robots. In 1996 IEEE International Conference on Robotics and Automation, volume 2, pages 1744–1749.

    Google Scholar 

  • Latimer-IV, D., Srinivasa, S., Lee-Shue, V., Sonne, S. S., Choset, H., and Hurst, A. (2002). Toward sensor based coverage with robot teams. In Proc. 2002 IEEE International Conference on Robotics & Automation.

    Google Scholar 

  • Luo, C. and Yang, S. (2002). A real-time cooperative sweeping strategy for multiple cleaning robots. In IEEE Internatinal Symposium on Intelligent Control, pages 660–665.

    Google Scholar 

  • Min, T. W. and Yin, H. K. (1998). A decentralized approach for cooperative sweeping by multiple mobile robots. In 1998 IEEE/RSJ International Conference on Intelligent Robots and Systems, volume 1, pages 380–385.

    Article  Google Scholar 

  • Rekleitis, I., Lee-Shue, V., New, A. P., and Choset, H. (2004). Limited communication, multi-robot team based coverage. In IEEE International Conference on Robotics and Automation, pages 3462–3468, New Orleans, LA.

    Google Scholar 

  • Roumeliotis, S. I. and Rekleitis, I. M. (2004). Propagation of uncertainty in cooperative multi-robot localization: Analysis and experimental results. Autonomous Robots, 17(1):41–54.

    Article  Google Scholar 

  • Schreckenghost, D., Bonasso, P., Kortenkamp, D., and Ryan, D. (1998). Three tier architecture for controlling space life support systems. In IEEE Int. Joint Symposia on Intelligence and Systems, pages 195–201.

    Google Scholar 

  • Wagner, I., Lindenbaum, M., and Bruckstein, A. (1999). Distributed covering by ant-robots using evaporating traces. IEEE Transactions on Robotics and Automation, 15(5):918–933.

    Article  Google Scholar 

  • Wagner, M., Apostolopoulos, D., Shillcutt, K., Shamah, B., Simmons, R., and Whittaker, W. (2001). The science autonomy system of the nomad robot. In IEEE International Conference on Robotics and Automation, volume 2, pages 1742–1749.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Rekleitis, I., New, A.P., Choset, H. (2005). Distributed Coverage of Unknown/Unstructured Environments by Mobile Sensor Networks. In: Parker, L.E., Schneider, F.E., Schultz, A.C. (eds) Multi-Robot Systems. From Swarms to Intelligent Automata Volume III. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3389-3_12

Download citation

  • DOI: https://doi.org/10.1007/1-4020-3389-3_12

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-1-4020-3388-9

  • Online ISBN: 978-1-4020-3389-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics