Skip to main content

Natural Toxins: The Past and the Present

  • Conference paper
Defense against Bioterror

Part of the book series: NATO Security through Science Series ((NAPS))

  • 819 Accesses

Abstract

Different bacteria, viruses and toxins constitute a potential menace for people. The number of toxins that could be applied for a bioterrorist attack with real public health risk, though, is relatively limited. However, these natural toxins could cause difficult troubles. The objective of this paper is focused on the toxins of various origins that might be used as a biological weapon. To be used in such a way the toxin should be highly lethal and easily produced in large quantities. Our current knowledge on natural toxins is conducive to select the toxin list threatening public health. At present this list includes a few bacterial and plant toxins, as well as a set of toxins produced by algae and molds. Novel methods of toxin detection should be able to monitor the presence of many toxins at the same time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L.L. Simpson, Identification of the major steps in botulinum toxin action, Annu Rev Pharmacol Toxicol. 44 (2004) 167–193.

    Article  CAS  Google Scholar 

  2. D. Josko, Botulin toxin: a weapon in terrorism, Clin Lab Sci. 17 (2004) 30–34.

    Google Scholar 

  3. G. Lalli et al., The journey of tetanus and botulinum neurotoxins in neurons, Trends Microbiol. 11 (2003) 431–437.

    Article  CAS  Google Scholar 

  4. B. Poulain and Y. Humeau, Mode of action of botulinum neurotoxin: pathological, cellular and molecular aspect, Ann Readapt Med Phys. 46 (2003) 265–275.

    CAS  Google Scholar 

  5. C. Singer, Indications and management of botulinum toxin, Rev Neurol. 29 (1999) 157–162.

    CAS  Google Scholar 

  6. S.M. Bradberry et al., Ricin poisoning, Toxicol Rev. 22 (2003) 65–70.

    Article  CAS  Google Scholar 

  7. M.J. Lord et al., Ricin. Mechanisms of cytotoxicity, Toxicol Rev. 22 (2003) 53–64.

    Article  CAS  Google Scholar 

  8. J. Robertus, The structure and action of ricin, a cytotoxic N-glycosidase, Semin Cell Biol. 2 (1991) 23–30.

    CAS  Google Scholar 

  9. J.M. Lord, L.M. Roberts and J.D. Robertus, Ricin: structure, mode of action, and some current applications, FASEB J. 8 (1994) 201–208.

    CAS  Google Scholar 

  10. S. Olsnes and J.V. Kozlov, Ricin, Toxicon 39 (2001) 1723–1728.

    Article  CAS  Google Scholar 

  11. K. Sandvig et al., Ricin transport into cells: studies of endocytosis and intracellular transport, Int J Med Microbiol. 290 (2000) 415–420.

    CAS  Google Scholar 

  12. J. Wesche, Retrograde transport of ricin, Int J Med Microbiol. 291 (2002) 517–521.

    Article  CAS  Google Scholar 

  13. M.R. Watters, Organic neurotoxins in seafoods, Clin Neurol Neurosurg. 97 (1995) 119–124.

    Article  CAS  Google Scholar 

  14. E.J. Schantz et al., Paralytic shellfish poison. VI. A procedure for the isolation and purification of the poison from toxic clams and mussel tissues, J.Am.Chem.Soc. 79 (1957) 5230–5235.

    Article  CAS  Google Scholar 

  15. E.J. Schantz et al., The structure of saxitoxin, J.Am.Chem.Soc. 97 (1975) 1238–1239.

    Article  CAS  Google Scholar 

  16. T. Narahashi, M.L. Roy and K.S. Ginsburg, Recent advances in the study of mechanism of action of marine neurotoxins, Neurotoxicology 15 (1994) 545–554.

    CAS  Google Scholar 

  17. J.F. Briand et al., Health hazards for terrestrial vertebrates from toxic cyanobacteria in surface water ecosystems, Vet Res. 34 (2003) 361–377.

    Article  CAS  Google Scholar 

  18. P.V. Rao et al., Toxins and bioactive compounds from cyanobacteria and their implications on human health, J Environ Biol. 23 (2002) 215–224.

    CAS  Google Scholar 

  19. G.A. Codd, C.J. Ward and S.G. Bell, Cyanobacterial toxins: occurrence, modes of action, health effects and exposure routes, Arch Toxicol Suppl. 19 (1997) 399–410.

    CAS  Google Scholar 

  20. R.M. Dawson, The toxicology of microcystins, Toxicon 36 (1998) 953–962.

    Article  CAS  Google Scholar 

  21. K. Bischoff, The toxicology of microcystin-LR: occurrence, toxicokinetics, toxicodynamics, diagnosis and treatment, Vet Hum Toxicol. 43 (2001) 294–297.

    CAS  Google Scholar 

  22. B.M. Gulledgea et al., The microcystins and nodularins: cyclic polypeptide inhibitors of PP1 and PP2A, Curr Med Chem. 9 (2002) 1991–2003.

    CAS  Google Scholar 

  23. M.M. Gehringer, Microcystin-LR and okadaic acid-induced cellular effects: a dualistic response, FEBS Lett. 557 (2004) 1–8.

    Article  CAS  Google Scholar 

  24. Toxic Cyanobacteria in Water: a guide to their public health consequences, monitoring and management. Chorus, E. & Bartram, J. (Eds.) World Health Organisation 1999, E&FN Spoon London & New York.

    Google Scholar 

  25. W.W. Carmichael, D.F. Biggs and P.R. Gorham, Toxicology and pharmacological action of anabaena flos-aquae toxin, Science. 187 (1975) 542–544.

    CAS  Google Scholar 

  26. C.E. Spivak, B. Witkop and E.X. Albuquerque, Anatoxin-a: a novel, potent agonist at the nicotinic receptor, Mol Pharmacol. 18 (1980) 384–394.

    CAS  Google Scholar 

  27. N.B. Astrachan, B.G. Archer and D.R. Hilbelink, Evaluation of the subacute toxicity and teratogenicity of anatoxin-a, Toxicon 18 (1980) 684–688.

    Article  CAS  Google Scholar 

  28. N.A. Mahmood and W.W. Carmichael, The pharmacology of anatoxin-a(s), a neurotoxin produced by the freshwater cyanobacterium Anabaena flos-aquae NRC 525-17, Toxicon 24 (1986) 425–434.

    Article  CAS  Google Scholar 

  29. N.A. Mahmood and W.W. Carmichael, Anatoxin-a(s), an anticholinesterase from the cyanobacterium Anabaena flos-aquae NRC-525-17, Toxicon 25 (1987) 1221–1227.

    Article  CAS  Google Scholar 

  30. P.S. Steyn, Mycotoxins, general view, chemistry and structure, Toxicol Lett. 82–83 (1995) 843–851.

    Article  Google Scholar 

  31. D. Bhatnagar and K.C. Ehrlich, Toxins of filamentous fungi, Chem Immunol. 81 (2002) 167–206.

    Article  CAS  Google Scholar 

  32. J.W. Bennett and M. Klich, Mycotoxins, Clin Microbiol Rev. 16 (2003) 497–516.

    Article  CAS  Google Scholar 

  33. R. Kappe and D. Rimek, Fungal diseases, Prog Drug Res. Spec No (2003) 13–38.

    Google Scholar 

  34. S.E. Browne and M.F. Beal, Toxin-induced mitochondrial dysfunction, Int Rev Neurobiol. 53 (2002) 243–279.

    Article  CAS  Google Scholar 

  35. R. Goldman and P.G. Shields, Food mutagens, J Nutr. 133Suppl 3 (2003) 965S–973S.

    CAS  Google Scholar 

  36. H.N. Mishra and C. Das, A review on biological control and metabolism of aflatoxin, Crit Rev Food Sci Nutr. 43 (2003) 245–264.

    Article  CAS  Google Scholar 

  37. M. McLean and M.F. Dutton, Cellular interactions and metabolism of aflatoxin: an update, Pharmacol Ther. 65 (1995) 163–192.

    Article  CAS  Google Scholar 

  38. C.P. Wild and P.C. Turner, The toxicology of aflatoxins as a basis for public health decisions, Mutagenesis. 17 (2002) 471–481.

    Article  CAS  Google Scholar 

  39. G. Dirheimer and E.E. Creppy, Mechanism of action of ochratoxin A, IARC Sci Publ. 115 (1991) 171–186.

    CAS  Google Scholar 

  40. V. Berger et al., Interaction of ochratoxin A with human intestinal Caco-2 cells: possible implication of a multidrug resistance-associated protein (MRP2), Toxicol Lett. 140–141 (2003) 465–476.

    Article  CAS  Google Scholar 

  41. D.L. Sudakin, Trichothecenes in the environment: relevance to human health, Toxicol Lett. 143 (2003) 97–107.

    Article  CAS  Google Scholar 

  42. P.P. Williams, Effects of T-2 mycotoxin on gastrointestinal tissues: a review of in vivo and in vitro models, Arch Environ Contam Toxicol. 18 (1989) 374–387.

    Article  CAS  Google Scholar 

  43. J.B. Delehanty and F.S. Ligler, A microarray immunoassay for simultaneous detection of proteins and bacteria, Anal. Chem. 74 (2002) 5681–5687.

    Article  CAS  Google Scholar 

  44. F.S. Ligler et al, Array biosensor for detection of toxins, Anal. Bioanal. Chem. 377 (2003) 469–477.

    Article  CAS  Google Scholar 

  45. K.L. Ewalt et al, Detection of biological toxins on an active electronic microchip, Anal. Biochem. 289 (2001) 162–172.

    Article  CAS  Google Scholar 

  46. A.E. Grow et al., New biochip technology for label-free detection of pathogens and their toxins, J. Microbiol. Methods 53 (2003) 221–233.

    Article  CAS  Google Scholar 

  47. A.Yu. Rubina et al., Hydrogel-based protein microchips: manufacturing, properties, and applications, BioTechniques 34 (2003) 1008–1022.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Grishin, E. (2005). Natural Toxins: The Past and the Present. In: Morrison, D., Milanovich, F., Ivnitski, D., Austin, T.R. (eds) Defense against Bioterror. NATO Security through Science Series. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3384-2_2

Download citation

Publish with us

Policies and ethics