Skip to main content

Application of Immobilised Cells for Air Pollution Control

Cleaning air naturally

  • Chapter
Applications of Cell Immobilisation Biotechnology

Part of the book series: Focus on Biotechnology ((FOBI,volume 8B))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pomeroy, R.D. (1957) Deodorizing gas streams by the use of microbiological growths. US Patent 2.793.096.

    Google Scholar 

  2. Devinny, J.S.; Deshusses, M.A. and Webster, T.S. (1999) Biofiltration for air pollution control. Lewis Publishers, Boca Raton, FL, USA; 300 pages.

    Google Scholar 

  3. van Groenestijn, J.W. and Hesselink, P.G.M. (1993) Biotechniques for air pollution control. Biodegradation. 4: 283–301.

    Article  Google Scholar 

  4. Leson, G. and Winer, A.M. (1991) Biofiltration-An innovative air pollution control technology for VOC emissions. J. Air Waste Manage. Assoc. 41: 1045–1054.

    PubMed  CAS  Google Scholar 

  5. Kennes, C. and Veiga, M.C. (2001). Conventional Biofilters. In: Kennes, C. and Veiga, M.C. (Eds.) Bioreactors for Waste Gas Treatment. Kluwer Academic Publisher, The Netherlands, 47–98.

    Google Scholar 

  6. Deshusses, M.A. (1997) Biological waste air treatment in biofilters. Curr. Opin. Biotechnol. 8(3): 335–339.

    Article  PubMed  CAS  Google Scholar 

  7. Cox, H.H.J. and Deshusses, M.A. (1998) Biological waste air treatment in biotrickling filters. Curr. Opin. Biotechnol. 9(3): 256–262.

    Article  PubMed  CAS  Google Scholar 

  8. Cox, H.H.J and Deshusses, M.A. (2001) Biotrickling Filters. In: Kennes, C. and Veiga, M.C. (Eds.) Bioreactors for Waste Gas Treatment. Kluwer Academic Publisher, The Netherlands, 99–131.

    Google Scholar 

  9. Kirchner, K.; Wagner, S. and Rehm, H.J. (1992) Exhaust gas purification using biocatalysts (fixed bacteria monocultures)-the influence of biofilm diffusion rate (O2) on the overall reaction rate. Appl. Microbiol. Biotechnol. 37: 277–279.

    Article  CAS  Google Scholar 

  10. Zilli, M.; Converti, A.; Lodi, A.; Del Borghi, M. and Ferraiolo, G. (1993) Phenol removal from waste gases with a biological filter by Pseudomonas putida. Biotechnol. Bioeng. 41: 693–699.

    Article  CAS  PubMed  Google Scholar 

  11. Webster, T.S.; Devinny, J.S.; Torres, E.M. and Basrai, S.S. (1997) Microbial ecosystems in compost and granular activated carbon biofilters. Biotechnol. Bioeng. 53: 296–303.

    Article  CAS  PubMed  Google Scholar 

  12. Mason C.A.; Hamer, G. and Bryers, J.D. (1986) The death and lysis of microorganisms in environmental processes. FEMS Microbiol. Rev. 39: 373–401.

    CAS  Google Scholar 

  13. Sakano, Y. and Kerkhof, L. (1998) Assessment of changes in microbial community structure during operation of an ammonia biofilter with molecular tools. Appl. Environ. Microbiol. 64: 4877–4882.

    PubMed  CAS  Google Scholar 

  14. Oh, Y.S. and Bartha, R. (1997) Removal of nitrobenzene vapors by a trickling air biofilter. J. Ind. Microbiol. Biotechnol. 18: 293–296.

    Article  CAS  Google Scholar 

  15. Fortin, N.Y. and Deshusses, M.A. (1999) Treatment of methyl tert-butyl ether vapors in biotrickling filters. 1. Reactor startup, steady-state performance, and culture characteristics. Environ. Sci. Technol. 33: 2980–2986.

    Article  CAS  Google Scholar 

  16. Bendinger, B.; Kroppenstedt, R.M.; Klatte, S. and Altendorf, K. (1992) Chemotaxonomic differentiation of coryneform bacteria isolated from biofilters. Int. J. Syst. Bacteriol. 42: 474–486

    Article  PubMed  CAS  Google Scholar 

  17. Juteau, P.; Larocque, R.; Rho, D. and Le Duy, A. (1999) Analysis of the relative abundance of different types of bacteria capable of toluene degradation in a compost biofilter. Appl. Microbiol. Biotechnol. 52(6): 863–868.

    Article  PubMed  CAS  Google Scholar 

  18. Friedrich, U.; Naismith, M.M.; Altendorf, K. and Lipski A. (1999). Community analysis of biofilters using fluorescence in situ hybridization including a new probe for the Xanthomonas branch of the class Proteobacteria. Appl. Environ. Microbiol. 65: 3547–3554.

    PubMed  CAS  Google Scholar 

  19. Moller, S.; Pedersen, A.R.; Poulsen, L.K.; Arvin, E. and Molin, S. (1996) Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl. Environ. Microbiol. 12: 4632–4640.

    Google Scholar 

  20. Yadav, J.S. and Reddy, C.A. (1993) Degradation of benzene, toluene, ethylbenzene and xylenes (BTEX) by the lignin-degrading basidiomycete Phanerochaete chrysosporium. Appl. Environ. Microbiol. 59: 756–762.

    PubMed  CAS  Google Scholar 

  21. Braun-Lüllemann, A.; Majcherczyk, A.; Tebbe, N. and Hüttermann, A. (1992) Bioluftfilter auf der Basis von Weipfäulepilzen. In: Dragt, A.J. and van Ham, J. (Eds.) Biotechniques for Air Pollution Abatement and Odour Control Policies. Elsevier, Amsterdam, The Netherlands, 91–95.

    Google Scholar 

  22. Cox, H.H.J.; Moerman, R.E.; van Baalen, S.; van Heiningen, W.N.M.; Doddema, H.J. and Harder, W. (1997) Performance of a styrene-degrading biofilter containing the yeast Exophiala jeanselmei. Biotechnol. Bioeng. 53: 259–266.

    Article  CAS  PubMed  Google Scholar 

  23. Garcia-Pena, E. I.; Hernandez, S.; Favela-Torres, E.; Auria, R. and Revah, S. (2001) Toluene biofiltration by the fungus Scedosporium apiospermum TB1. Biotechnol. Bioeng. 76(1): 61–69.

    Article  PubMed  CAS  Google Scholar 

  24. Phae, C.G. and Shoda, M. (1991) A new fungus which degrades hydrogen sulphide, methanethiol, dimethyl sulphide and dimethyl disulfide. Biotechnol. Lett. 13: 375–380.

    Article  CAS  Google Scholar 

  25. Woertz, J.R.; Kinney, K.A.; McIntosh, N.D.P. and Szaniszlo, P.J. (2001) Removal of toluene in a vaporphase bioreactor containing a strain of the dimorphic black yeast Exophiala lecanii-corni. Biotechnol. Bioeng. 75(5): 550–558.

    Article  PubMed  CAS  Google Scholar 

  26. Woertz, J.R.; Kinney, K.A. and Szaniszlo, P.J. (2001) A fungal vapor-phase bioreactor for the removal of nitric oxide from waste gas streams. J. Air Waste Manage. Assoc. 51(6): 895–902.

    CAS  Google Scholar 

  27. Characklis, W.G. and Marshall, K.C. (1990) Biofilms. Wiley & Sons, New York, NY, USA; 796 pages.

    Google Scholar 

  28. de Beer, D.; Stoodley, P.; Roe, F. and Lewandowski, Z. (1994) Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43: 1131–1138.

    Article  PubMed  Google Scholar 

  29. Hugler, W.C.; Cantu-De la Garza J.G.; and Villa-Garcia, M. (1996) Biofilm analysis from an odorremoving trickling filter. In: Air & Waste Management Association (Ed.) Proc. Annual Meeting and Exhibition of the Air & Waste Management Association. Pittsburgh, PA, USA; paper 96-RA87A.04: 20 pages.

    Google Scholar 

  30. Holubar, P.; Andorfer, C. and Braun, R. (1999) Effects of nitrogen limitation on biofilm formation in a hydrocarbon-degrading trickle-bed filter. Appl. Microbiol. Biotechnol. 51: 536–540.

    Article  PubMed  CAS  Google Scholar 

  31. Wübker, S.M. and Friedrich, C. (1996) Reduction of biomass in a bioscrubber for waste gas treatment by limited supply of phosphate and potassium ions. Appl. Microbiol. Biotechnol. 46: 475–480.

    Article  Google Scholar 

  32. Weber, F.J. and Hartmans, S. (1996) Prevention of clogging in a biological trickle-bed reactor removing toluene from contaminated air. Biotechnol. Bioeng. 50: 91–97.

    Article  CAS  PubMed  Google Scholar 

  33. Cox, H.H.J. and Deshusses, M.A. (1999) Biomass control in waste air biotrickling filters by protozoan predation. Biotechnol. Bioeng. 62: 216–224.

    Article  PubMed  CAS  Google Scholar 

  34. Woertz, J.R.; van Heiningen, W.N.M.; van Eekert, M.H.A.; Kraakman, N.J.R.; Kinney, K.A. and van Groenestijn, J.W. (2002) Dynamic bioreactor operation: Effects of packing material and mite predation on toluene removal from off-gas. Appl. Microbiol. Biotechnol. 58(5): 690–694.

    Article  PubMed  CAS  Google Scholar 

  35. Won, Y.S.; Cox, H.H.J.; Walton, W.E. and Deshusses, M.A. (2002) An environmentally friendly method for controlling biomass in biotrickling filters for air pollution control. In: Air & Waste Management Association (Ed.) Proc. of the Annual Meeting and Exhibition of the Air & Waste Management Association. Pittsburgh, PA, USA; paper #43554: 12 pages.

    Google Scholar 

  36. Deshusses, M.A. and Cox, H.H.J (2002) Biotrickling Filters for Air Pollution Control. In: Bitton, G. (Ed.) The Encyclopedia of Environmental Microbiology, Vol. 2. Wiley & Sons, New York, NY, USA, 782–795.

    Google Scholar 

  37. Cherry, R.S. and Thompson, D.N. (1997) Shift from growth to nutrient-limited maintenance kinetics during biofilter acclimation. Biotechnol. Bioeng. 56(3): 330–339.

    Article  CAS  PubMed  Google Scholar 

  38. Fürer, C. and Deshusses M.A. (2000) Biodegradation in biofilters: Did the microbe inhale the VOC? In: Air & Waste Management Association (Ed.) Proc. of the Annual Meeting and Exhibition of the Air & Waste Management Association. Pittsburgh, PA, USA; paper #799: 13 pages.

    Google Scholar 

  39. Schönduve, P.; Sára, M. and Friedl, A. (1996) Influence of physiologically relevant parameters on biomass formation in a trickle-bed bioreactor used for waste gas cleaning. Appl. Microbiol. Biotechnol. 45:286–292.

    Article  Google Scholar 

  40. Laurenzis, A.; Heits, H.; Wübker, S.M.; Heinze, U.; Friedrich, C. and Werner, U. (1998) Continuous biological waste gas treatment in stirred trickle-bed reactor with discontinuous removal of biomass. Biotechnol. Bioeng. 57: 497–503.

    Article  PubMed  CAS  Google Scholar 

  41. Smith, F.L.; Sorial, G.A.; Suidan, M.T.; Breen, A.W.; Biswas, P. and Brenner, R.C. (1996) Development of two biomass control strategies for extended, stable operation of highly efficient biofilters with high toluene loadings. Environ. Sci. Technol. 30: 1744–1751.

    Article  CAS  Google Scholar 

  42. Cox, H.H.J. and Deshusses, M.A. (1999) Chemical removal of biomass from waste air biotrickling filters: screening of chemicals of potential interest. Wat. Res.33: 2383–2391.

    Article  CAS  Google Scholar 

  43. Devinny, J.S. and Hodge, D.S. (1995) Formation of acidic and toxic intermediates in overloaded ethanol biofilters. J. Air Waste Manage. Assoc. 45: 125–131.

    CAS  Google Scholar 

  44. Morgenroth, E.; Schroeder, E.D.; Chang, D.P.Y. and Scow, K.W. (1996) Nutrient limitation in a compost biofilter degrading hexane. J. Air Waste Manage. Assoc. 46: 300–308.

    CAS  Google Scholar 

  45. Zhu, X.; Rihn, M.J.; Suidan, M.T.; Kim, B.J. and Kim, B.R. (1996) The effect of nitrate on VOC removal in trickle bed biofilters. Wat. Sci. Technol. 34: 573–581.

    Article  CAS  Google Scholar 

  46. Chou, M.S. and Huang, J.J. (1997) Treatment of methyl ethyl ketone in air stream by biotrickling filters. J. Environ. Eng. 123(6): 569–576.

    Article  CAS  Google Scholar 

  47. Pedersen, A.R. and Arvin, E. (1995) Removal of toluene in waste gases using a biological trickling filter. Biodegradation 6: 109–118.

    Article  CAS  Google Scholar 

  48. Kong, Z.; Farhana, L.; Fulthorpe, R.R. and Allen, D.G. (2001) Treatment of volatile organic compounds in a biotrickling filter under thermophilic conditions. Environ. Sci. Technol. 35(21): 4347–4352.

    Article  PubMed  CAS  Google Scholar 

  49. Wright, W.F.; Schroeder, E.D.; Chang, D.P.Y. and Romstad, K. (1997) Performance of a pilot-scale compost biofilter treating gasoline vapor. J. Environ. Eng. 123(6): 547–555.

    Article  CAS  Google Scholar 

  50. Hugler, W.; Acosta, C. and Revah, S. (1999) Biological removal of carbon disulfide from waste air streams. Environ. Prog. 18(3): 173–177.

    Article  CAS  Google Scholar 

  51. Gabriel, D. and Deshusses, M.A. (2003) Retrofitting existing chemical scrubbers to biotrickling filters for H2S emission control. Proc. Natl. Acad. Sci. U.S.A. 100(11): 6308–6312.

    Article  PubMed  CAS  Google Scholar 

  52. Darlington, A.B.; Dat, J.F. and Dixon, M.A.(2001) The biofiltration of indoor air: Air flux and temperature influences the removal of toluene, ethylbenzene, and xylene. Environ. Sci. Technol. 35(1): 240–246.

    Article  PubMed  CAS  Google Scholar 

  53. Darlington, A.; Chan, M.; Malloch, D.; Pilger, C. and Dixon, M.A. (2000) The biofiltration of indoor air: Implications for air quality. Indoor Air-Int. J. Indoor Air Qual. Climate 10(1): 39–46.

    CAS  Google Scholar 

  54. Schwarz, B.C.E.; Devinny, J.S. and Tsotsis, T.T. (1999) Degradation of PCE in an anaerobic waste gas by biofiltration. Chem. Eng. Sci. 54(15–16): 3187–3195.

    Article  CAS  Google Scholar 

  55. Sun, A.K. and Wood, T.K. (1997) Trichloroethylene mineralization in a fixed-film bioreactor using a pure culture expressing constitutively toluene ortho-monooxygenase. Biotechnol. Bioeng. 55: 674–685.

    Article  CAS  PubMed  Google Scholar 

  56. Wilderer, P.A.; Bungartz, H.J.; Lemmer, H.; Wagner, M.; Keller, J. and Wuertz, S. (2002) Modern scientific methods and their potential in wastewater science and technology. Wat. Res. 36(2): 370–393.

    Article  CAS  Google Scholar 

  57. Tresse, O.; Lorrain, M.J. and Rho, D. (2002) Population dynamics of free-floating and attached bacteria in a styrene-degrading biotrickling filter analyzed by denaturing gradient gel electrophoresis. Appl. Microbiol. Biotechnol. 59(4–5): 585–590.

    PubMed  CAS  Google Scholar 

  58. Alexandrino, M.; Knief, C. and Lipski, A. (2001) Stable-isotope-based labeling of styrene-degrading microorganisms in biofilters. Appl. Environ. Microbiol. 67: 4796–4804.

    Article  PubMed  CAS  Google Scholar 

  59. Malhautier, L.; Degrange, V.; Guay, R.; Degorce-Dumar, J.R.; Bardin, R. and Le Cloirec, P. (1998) Estimation size and diversity of nitrifying communities in deodorizing filters using PCR and immunofluorescence. J. Appl. Microbiol. 85: 255–262.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Deshusses, M.A. (2005). Application of Immobilised Cells for Air Pollution Control. In: Nedović, V., Willaert, R. (eds) Applications of Cell Immobilisation Biotechnology. Focus on Biotechnology, vol 8B. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3363-X_30

Download citation

Publish with us

Policies and ethics