Skip to main content

The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 20))

Abstract

Over the last half century, the most frequently used assay for chlorophylls in higher plants and green algae, the Arnon assay [Arnon DI (1949) Plant Physiol 24: 1–15], employed simultaneous equations for determining the concentrations of chlorophylls a and b in aqueous 80% acetone extracts of chlorophyllous plant and algal materials. These equations, however, were developed using extinction coefficients for chlorophylls a and b derived from early inaccurate spectrophotometric data. Thus, Arnon’s equations give inaccurate chlorophyll a and b determinations and, therefore, inaccurate chlorophyll a/b ratios, which are always low. This paper describes how the ratios are increasingly and alarmingly low as the proportion of chlorophyll a increases. Accurate extinction coefficients for chlorophylls a and b, and the more reliable simultaneous equations derived from them, have been published subsequently by many research groups; these new post-Arnon equations, however, have been ignored by many researchers. This Minireview records the history of the development of accurate simultaneous equations and some difficulties and anomalies arising from the retention of Arnon’s seriously flawed equations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Anderson JM (1986) Photoregulation of the composition, function, and structure of thylakoid membranes. Annu Rev Plant Physiol 37: 93–136

    Article  CAS  Google Scholar 

  • Andersson B, Åkerlund H-E and Albertsson P-Å (1976) Separation of sub-chloroplast membrane particles by counter-current distribution. Biochim Biophys Acta 423: 122–132

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris. Plant Physiol 24: 1–15

    PubMed  CAS  Google Scholar 

  • Böger P (1964) Das Strukturproteid aus Chloroplasten einzelliger Grünalgen und seiner Beziehung zum Chlorophyll. Flora 154: 174–211

    Google Scholar 

  • Butler PJG and Kühlbrandt W (1988) Determination of the aggregate size in detergent solution of the light-harvesting chlorophyll a/b-protein complex from chloroplast membranes. Proc Nat Acad Sci USA 85: 3797–3801

    Article  PubMed  CAS  Google Scholar 

  • Comar CL and Zscheile FP (1942) Analysis of plant extracts for chlorophyll a and b by a photoelectric spectrophotometric method. Plant Physiol 17: 198–209

    PubMed  CAS  Google Scholar 

  • Delaporte N and Laval-Martin D (1971a) Analyse spectrophotometrique des chlorophylles et des pheophytines a et b en milieu hydroacetonique. I. Determination extinctions molaires. Anal Chem Acta 55: 415–424

    Article  CAS  Google Scholar 

  • Delaporte N and Laval-Martin D (1971b) Analyse spectrophotometrique des chlorophylles et des pheophytines a et b en milieu hydroacetonique. II. Methode Cinetique de dosage. Anal Chem Acta 55: 425–435

    Article  CAS  Google Scholar 

  • Inskeep WP and Bloom PR (1985) Extinction coefficients of chlorophyll a and b in N,N-dimethylformamide and 80% acetone. Plant Physiol 77: 483–485

    Article  PubMed  CAS  Google Scholar 

  • Kühlbrandt W and Wang DN (1991) Three-dimensional structure of plant light-harvesting complex determined by electron crystallography. Nature (London) 350: 130–134

    Article  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model of plant light-harvesting complex by electron crystallography. Nature (London) 367: 614–621

    Article  Google Scholar 

  • Lichtenthaler HK (1987) Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Meth Enzymol 148: 350–382

    Article  CAS  Google Scholar 

  • Mackinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140: 315–322

    CAS  Google Scholar 

  • Ogawa T and Shibata K (1965) A sensitive method for determining chlorophyll b in plant extracts. Photochem Photobiol 4: 193–200

    CAS  Google Scholar 

  • Porra RJ (1990a) The assay of chlorophylls a and b converted to their respective magnesium-rhodochlorin derivatives by extraction from recalcitrant algal cells with aqueous alkaline methanol: prevention of allomerization with reductants. Biochim Biophys Acta 1015: 493–502

    Article  CAS  Google Scholar 

  • Porra RJ (1990b) A simple method for extracting chlorophylls from the recalcitrant alga, Nannochloris atomus, without formation of spectroscopically-different magnesium-rhodochlorin derivatives. Biochim Biophys Acta, 1019: 137–141

    Article  CAS  Google Scholar 

  • Porra RJ (1991) Recent advances and re-assessments in chlorophyll extraction and assay procedures for terrestrial, aquatic, and marine organisms, including recalcitrant algae. In: Scheer H (ed) Chlorophylls, pp 31–57. CRC Press, Boca Raton, Florida

    Google Scholar 

  • Porra RJ and Grimme LH (1974) A new procedure for the determination of chlorophylls a and b and its application to normal and regreening Chlorella. Anal Biochem 57: 255–267

    Article  PubMed  CAS  Google Scholar 

  • Porra RJ, Thompson WA and Kriedemann PE (1989) Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectrometry. Biochim Biophys Acta 975: 384–394

    CAS  Google Scholar 

  • Rabinowitch E (1945) Photosynthesis and Related Processes, Vol 1, pp 399–432. Interscience Publishers, New York

    Google Scholar 

  • Rogl, H and Kühlbrandt W (1999) Mutant trimers of light-harvesting complex II exhibit altered pigment content and spectroscopic features. Biochemistry 38: 16214–16222

    Article  PubMed  CAS  Google Scholar 

  • Sane PV, Goodchild DJ and Park RB (1970) Characterization of chloroplast Photosystems 1 and 2 separated by a non-detergent method. Biochim Biophys Acta 216: 162–178

    Article  PubMed  CAS  Google Scholar 

  • Seybold A and Egle K (1938) Zur Chromatographischen Methode der Blattpigmente. Planta 29: 114–118

    Article  Google Scholar 

  • Smith JHC and Benitez A (1955) Chlorophylls: analysis in plant materials. In: Paech K and Tracey MV (eds) Modern Methods of Plant Analysis. Vol IV, pp 142–196. Springer-Verlag, Berlin

    Google Scholar 

  • Strain HH and Svec WA (1966) Extraction separation, estimation and isolation of the chlorophylls. In: Vernon LP and Svec GR (eds) The Chlorophylls, pp 21–66. Academic Press, New York

    Google Scholar 

  • Talbot MFJ and Sauer K (1997) Spectrofluorimetric method for determination of large chlorophyll a/b ratios. Photosynth Res 53: 73–79

    Article  CAS  Google Scholar 

  • Thompson EW and Preston RD (1967) Proteins in the cell walls of some green algae. Nature (London) 213: 684–685

    Article  CAS  Google Scholar 

  • Thompson EW and Preston RD (1968) Evidence for a structural role of protein in algal cell walls. J Exp Bot 19: 690–697

    CAS  Google Scholar 

  • Thornber JP (1986) Biochemical characterization and structure of pigment-proteins of a photosynthetic organism. In: Staehelin LA and Arntzen CJ (eds) Encyclopedia of Plant Physiology ‘Photosynthesis III’, Vol 19, pp 98–142. Springer-Verlag, Berlin

    Google Scholar 

  • Vernon LP (1960) Spectrophotometric determination of chlorophylls and pheophytins in plant extracts. Anal Chem 32: 1144–1150

    Article  CAS  Google Scholar 

  • Wellburn AR (1994) The spectral determination of chlorophylls a and b, as well as total carotenoids, using various solvents with spectrophotometers of different resolution. J Plant Physiol 144: 307–313

    CAS  Google Scholar 

  • Willstätter R and Stoll A (1913) Untersuchungen über Chlorophyll: Methoden und Ergebnisse, pp 53–125. Julius Springer-Verlag, Berlin

    Google Scholar 

  • Ziegler R and Egle K (1965) Zur quantitativen Analyse der Chloroplastenpigmente. I. Kritische Überprüfung der spektralphotometrischen Chlorophyll-Bestimmung. Beitr Biol Pflanzen 41: 11–37

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Porra, R.J. (2005). The chequered history of the development and use of simultaneous equations for the accurate determination of chlorophylls a and b . In: Govindjee, Beatty, J.T., Gest, H., Allen, J.F. (eds) Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration, vol 20. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3324-9_56

Download citation

Publish with us

Policies and ethics