Skip to main content

Early indications for manganese oxidation state changes during photosynthetic oxygen production: a personal account

  • Chapter

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 20))

Abstract

One of the major questions yet to be answered in photosynthesis research today is what is the chemical mechanism for the oxidation of water into molecular oxygen. It is well established that an inorganic cluster of four manganese ions and at least one calcium ion form the catalytic core. As the oxidation potential generated by the Photosystem II reaction center is accumulated over the four sequential steps needed to produce O2, changes in the oxidation state of the catalytic manganese occur, though the formal oxidation states that are involved are still a matter of considerable debate. Much of what is currently known has come from direct measurements of the catalytic manganese using electron paramagnetic resonance (EPR) and X-ray spectroscopy. However, in the early attempts to attack this problem, the catalytic manganese was monitored indirectly by its paramagnetic effect on the nuclear magnetic resonance (NMR) relaxation rates of solvent water protons. In this contribution, a description of the proton relaxation rate phenomenon and its use to indicate manganese oxidation state changes during O2 production is presented.

In memory of Herbert S. Gutowsky.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Allen FL and Franck J (1955) Photosynthetic evolution of oxygen by flashes of light. Arch Biochem Biophys 58: 124–143

    Article  PubMed  CAS  Google Scholar 

  • Berthold DA, Babcock GT and Yocum CF (1981) A highly resolved, oxygen-evolving Photosystem II preparation from spinach thylakoid membranes. FEBS Lett 13: 231–233

    Article  Google Scholar 

  • Blankenship RE and Sauer K (1974) Manganese in photosynthetic oxygen evolution I. Electron paramagnetic resonance study of the environment of manganese in tris-washed chloroplasts. Biochim Biophys Acta 357: 252–266

    Article  PubMed  CAS  Google Scholar 

  • Carrell TG, Tyryshkin AM and Dismukes GC (2002) An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray signatures. J Biol Inorg Chem 7: 2–22

    Article  PubMed  CAS  Google Scholar 

  • Cheniae GM and Martin IF (1966) Studies on the function of manganese in photosynthesis. Brookhaven Symp Biol 19: 409–417

    Google Scholar 

  • Cheniae GM and Martin IF (1970) Sites of function of manganese within photosystem II. Roles in O2 evolution. Biochim Biophys Acta 197: 219–239

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (2001) Amino acid residues that modulate the properties of tyrosine YZ and the manganese cluster in the water oxidizing complex of Photosystem II. Biochim Biophys Acta 1503:164–186

    Article  PubMed  CAS  Google Scholar 

  • Diner BA (2001) Amino acid residues involved in the coordination and assembly of the manganese cluster of Photosystem II. Proton-coupled electron transport of the redox active tyrosines and its relationship to water oxidation. Biochim Biophys Acta 1503: 147–163

    Article  PubMed  CAS  Google Scholar 

  • Dismukes GC and Siderer Y (1981) Intermediates of a polynuclear manganese cluster involved in the photosynthetic oxidation of water. Proc Natl Acad Sci USA 78: 274–278

    Article  PubMed  CAS  Google Scholar 

  • Dwek RA (1973) Nuclear Magnetic Resonance (NMR) in Biochemistry: Application to Enzyme Systems. Claredon Press, Oxford

    Google Scholar 

  • Early JE (1973) Oxygen evolution: a molecular model for the photosynthetic process based on an inorganic example. Inorg Nucl Chem Lett 9: 487–490

    Article  Google Scholar 

  • Fischer G and Wydrzynski T (2001) Isotope effects in FTIR difference spectra of the photosynthetic oxygen-evolving catalytic site determined by ab inito calculations on model compounds. J Phys Chem B 105: 12894–12901

    Article  CAS  Google Scholar 

  • Forbush M, Kok B and McGloin M (1971) Cooperation of charges in photosynthetic O2 evolution 2. Damping of flash yield oscillation and deactivation. Photochem Photobiol 14: 307–321

    CAS  Google Scholar 

  • Govindjee and Wydrzynski T (1981) Oxygen evolution, manganese, ESR and NMR. In: Akoyunoglou G (ed) Proceedings of the Fifth International Congress on Photosynthesis Vol II, pp 307–305. Balaban International Science Services, Philadelphia

    Google Scholar 

  • Govindjee, Wydrzynski T and Marks SB (1978) Manganese and chloride: their roles in photosynthesis. In: Metzner H (ed) Photosynthetic Oxygen Evolution, pp 321–344. Academic Press, New York

    Google Scholar 

  • Hasegawa K, Ono T-A, Inoue Y and Kusunoki M (1999) How to evaluate the structure of a tetranuclear Mn cluster from magnetic and EXAFS data: case of the S2-state Mn-cluster in photosystem II. Bull Chem Soc Japan 72: 1013–1023

    Article  CAS  Google Scholar 

  • Hendry G and Wydrzynski (2002) The two substrate-water molecules are already bound to the oxygen-evolving complex in the S2 state of Photosystem II. Biochemistry 41: 13328–13334

    Article  PubMed  CAS  Google Scholar 

  • Hillier W and Wydrzynski T (2000) The affinities for the two substrate water binding sites in the O2 evolving complex of Photosystem II vary independently during S-state turnover. Biochemistry 39: 4399–4405

    Article  PubMed  CAS  Google Scholar 

  • Hillier W and Wydrzynski T (2001) Oxygen ligand exchange at metal sites. Implications for the O2 evolving mechanism of Photosystem II. Biochim Biophys Acta 1503: 197–209

    Article  PubMed  CAS  Google Scholar 

  • Joliot P (1993) Early researches on the mechanism of oxygen evolution: a personal account. Photosynth Res 38: 214–233

    Article  CAS  Google Scholar 

  • Joliot P (2003) Period-four oscillation of the flash-induced oxygen formation in photosynthesis. Photosynth Res 76: 65–72

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Barbieri G and Chabaud R (1969) Un nouveau modele des centres photochimiques du systeme II. Photochem Photobiol 10:309–329

    CAS  Google Scholar 

  • Kamiya N and Shen J-R (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100: 98–103

    Article  PubMed  CAS  Google Scholar 

  • Katoh S and San Pietro A (1967) Ascorbate-supported NADP photoreduction in heated Euglena chloroplasts. Arch Biochem Biophys 122: 144–152

    Article  PubMed  CAS  Google Scholar 

  • Kessler E, Arthur W and Brugger JE (1957) The influence of manganese and phosphate on delayed light emission, fluorescence, photoreduction and photosynthesis in algae. Arch Biochem Biophys 71: 326–335

    Article  PubMed  CAS  Google Scholar 

  • Khanna R, Rajan S, Govindjee and Gutowsky HS (1983) Effects of physical and chemical treatments on chloroplast manganese: NMR and ESR studies. Biochim Biophys Acta 725: 10–18

    Article  CAS  Google Scholar 

  • Kimura Y and Ono T-A (2001) Chelator-induced disappearance of carboxylate stretching vibrational modes in S2/S1 FTIR spectrum in oxygen-evolving complex of Photosystem II. Biochemistry 40: 14061–14068

    Article  PubMed  CAS  Google Scholar 

  • Kirby JA, Goodin DB, Wydrzynski T, Robertson AS and Klein MP (1981) State of manganese in the photosynthetic apparatus 2. X-ray absorption edge studies of manganese in photosynthetic membranes. J Am Chem Soc 103: 5537–5542

    Article  CAS  Google Scholar 

  • Kok B, Forbush M and McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution 1. Photochem Photobiol 11: 457–475

    PubMed  CAS  Google Scholar 

  • Lozier R, Baginsky M and Butler WL (1971) Inhibition of electron transport in chloroplasts by chaotropic agents and the use of manganese as an electron donor to Photosystem II. Photochem Photobiol 14: 323–328

    CAS  Google Scholar 

  • Mar T and Govindjee (1972) Kinetic models of oxygen evolution in photosynthesis. J Theor Biol 36: 427–446

    Article  PubMed  CAS  Google Scholar 

  • Messinger J, Badger M and Wydzynski (1995) Determination of one slowly exchanging substrate water molecule in the S3 state of Photosystem II. Proc Natl Acad Sci USA 92: 3209–3213

    Article  PubMed  CAS  Google Scholar 

  • Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SA, Sauer K, Klein MP and Yachandra VK (2001) Absence of Mn-centered oxidation in the S1 to S2 transition. Implications for the mechanism of photosynthetic water oxidation. J Am Chem Soc 123: 7804–7820

    Article  PubMed  CAS  Google Scholar 

  • Mildvan AS and Cohn M (1970) Aspects of enzyme mechanisms studied by nuclear spin relaxation induced by paramagnetic probes. Adv Enzymol 33: 1–70

    PubMed  CAS  Google Scholar 

  • Noguchi T and Sugiura M (2000) Structure of an active water molecule in the water-oxidizing complex of Photosystem II as studied by FTIR spectroscopy. Biochemistry 36: 10943–10949

    Article  Google Scholar 

  • Noguchi T and Sugiura M (2001) Flash-induced FTIR difference spectra of the water-oxidizing complex in moderately hydrated Photosystem II core films. Effect of hydration extent on S-state transitions. Biochemistry 40: 1497–1502

    Article  PubMed  CAS  Google Scholar 

  • Pirson A (1937) Ernährungs-und stoffwechselphysiologische Untersuchungen an Fontinalis und Chlorella. Z Bot 31: 193–272

    CAS  Google Scholar 

  • Pirson A (1994) Sixty years in algal physiology and photosynthesis. Photosynth Res 40: 207–222

    Article  CAS  Google Scholar 

  • Rabinowich E (1945) Photosynthesis and Related Topics Vol I. Wiley (Interscience), New York

    Google Scholar 

  • Rappaport F and Lavergne J (2001) Coupling of electron and proton transfer in the photosynthetic water oxidase. Biochim Biophys Acta 1503: 246–259

    Article  PubMed  CAS  Google Scholar 

  • Renger G (2003) Apparatus and mechanism of photosynthetic oxygen evolution: a personal historical reflection of 35 years research activity and current state of the art. Photosynth Res 76: 269–288

    Article  PubMed  CAS  Google Scholar 

  • Robinson HH, Sharp RR and Yocum CF (1980) Effect of manganese on the nuclear magnetic relaxivity of water protons in chloroplast suspensions. Biochem Biophys Res Comm 93: 755–761

    Article  PubMed  CAS  Google Scholar 

  • Sharp RR (1992) Proton NMR relaxation due to the photosynthetic oxygen evolving center. In: Pecoraro VL (ed) Manganese Redox Enzymes, pp 177–196. VCH Publishers, New York

    Google Scholar 

  • Sharp RR and Yocum CF (1980) Field dispersion profiles of the proton spin-lattice relaxation rate in chloroplast suspensions. Effect of manganese extraction by EDTA, tris and hydroxylamine. Biochim Biophys Acta 592: 185–195

    Article  PubMed  CAS  Google Scholar 

  • Siderer Y, Malkin S, Poupko R and Luz Z (1977) Electron spin resonance and photoreaction of Mn(II) in lettuce chloroplasts. Arch Biochem Biohys 179: 174–182

    Article  CAS  Google Scholar 

  • Spencer D and Possingham JV (1961) The effect of manganese deficiency on photophosphorylation and the O2-evolving sequence in spinach chloroplasts. Biochim Biophys Acta 52: 379–381

    Article  PubMed  CAS  Google Scholar 

  • Srinivasan AN and Sharp RR (1986a) Flash-induced enhancements in the proton NMR relaxation rate of Photosystem II particles. Biochim Biophys Acta 850: 211–217

    Article  CAS  Google Scholar 

  • Srinivasan AN and Sharp RR (1986b) Flash-induced enhancements in the proton NMR relaxation rate of Photosystem II particles. Response to flash trains of 1–5 flashes. Biochim Biophys Acta 851: 369–376

    Article  CAS  Google Scholar 

  • Wang JH (1970) Synthetic biochemical models. Acc Chem Res 3:90–97

    Article  CAS  Google Scholar 

  • Whittingham CP and Brown AH (1958) Oxygen evolution from algae illuminated by short and long flashes of light. J Exp Bot 9: 311–319

    CAS  Google Scholar 

  • Wydrzynski TJ (1977) The role of manganese in photosynthetic oxygen evolution. PhD thesis. University of Illinois at Urbana-Champaign, Illinois

    Google Scholar 

  • Wydrzynski TJ (1982) Oxygen evolution in photosynthesis. In: Govindjee (ed) Photosynthesis — Energy Conversion by Plants and Bacteria, Vol I, pp 469–506. Academic Press, New York

    Google Scholar 

  • Wydrzynski T and Renger G (1986) On the interpretation of the NMR water-proton relaxivity of photosynthetic membrane samples: ramifications in the use of EDTA. Biochim Biophys Acta 851: 65–74

    Article  CAS  Google Scholar 

  • Wydrzynski T and Sauer K (1980) Periodic changes in the oxidation state of manganese in photosynthetic oxygen evolution upon illumination with flashes. Biochim Biophys Acta 589: 56–70

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T, Zumbulyadis N, Schmidt PG and Govindjee (1975) Water proton relaxation as a monitor of membrane-bound manganese in spinach chloroplasts. Biochim Biophys Acta 408:349–354

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T, Zumbulyadis N, Schmidt PG, Gutowsky HS and Govindjee (1976) Proton relaxation and charge accumulation during oxygen evolution in photosynthesis. Proc Natl Acad Sci USA 73: 1196–1198

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski TJ, Marks SB, Schmidt PG, Govindjee and Gutowsky HS (1978) Nuclear magnetic relaxation by the manganese in aqueous suspensions of chloroplasts. Biochemistry 17:2155–2162

    Article  PubMed  CAS  Google Scholar 

  • Wydrzynski T, Hillier W and Messinger J (1996) On the functional significance of substrate accessibility in the photosynthetic water oxidation mechanism. Physiol Plant 96:342–350

    Article  CAS  Google Scholar 

  • Yamashita T and Butler WL (1968) Inhibition of the Hill reaction by tris and restoration by electron donation

    Google Scholar 

  • Zimmermann J-L, Boussac A and Rutherford AW (1993) The manganese center of oxygen-evolving and Ca2+-depleted Photosystem II: a pulsed EPR spectroscopy study. Biochemistry 32:4831–4841

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt H-T, Kern J, Fromme P, Krauss N, Saenger W and Orth P (2001) Crystal structure of Photosystem II from Synechococcus elongatus at 3.8Å resolution. Nature 409:739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Wydrzynski, T.J. (2005). Early indications for manganese oxidation state changes during photosynthetic oxygen production: a personal account. In: Govindjee, Beatty, J.T., Gest, H., Allen, J.F. (eds) Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration, vol 20. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3324-9_38

Download citation

Publish with us

Policies and ethics