Skip to main content

Engine of life and big bang of evolution: a personal perspective

  • Chapter
Book cover Discoveries in Photosynthesis

Part of the book series: Advances in Photosynthesis and Respiration ((AIPH,volume 20))

Abstract

Photosystem II (PS II) is the engine for essentially all life on our planet and its beginning 2.5 billion years ago was the ‘big bang of evolution.’ It produces reducing equivalents for making organic compounds on an enormous scale and at the same time provides us with an oxygenic atmosphere and protection against UV radiation (in the form of the ozone layer). In 1967, when I began my career in photosynthesis research, little was known about PS II. The Zscheme had been formulated [Hill and Bendall (1960) Nature 186: 136–137] and Boardman and Anderson [(1964) Nature 203: 166–167] had isolated PS II as a discrete biochemical entity. PS II was known not only to be the source of oxygen but of variable chlorophyll fluorescence [Duysens and Sweers (1963) In: Studies on Microalgae and Photosynthetic Bacteria, pp. 353–372. University of Tokyo Press, Tokyo] and delayed chlorophyll fluorescence [Arnold and Davidson (1954) J Gen Physiol 37: 677–684]. P680 had just been discovered [Döring et al. (1967) Z Naturforsch 22b: 639–644]. No wonder the ‘black box of PS II’ was described at that time by Bessel Kok and George Cheniae [Current Topics in Bioenergetics 1: 1–47 (1966)] as the ‘inner sanctum of photosynthesis.’ What a change in our level of understanding of PS II since then! The contributions of many talented scientists have unraveled the mechanisms and structural basis of PS II function and we are now very close to revealing the molecular details of the remarkable and thermodynamically demanding reaction which it catalyzes, namely the splitting of water into its elemental constituents. It has been a privilege to be involved in this journey.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adir N, Zer H, Shochat I and Ohad I (2003) Photoinhibition — a historical perspective. Photosynth Res 76: 343–370

    Article  PubMed  CAS  Google Scholar 

  • Albertsson PA (2001) A quantitative model of the domain structure of the photosynthetic membrane. Trends Plant Sci (TIPS) 6: 349–353

    Article  CAS  Google Scholar 

  • Albertsson PA (2003) The contribution of photosynthetic pigments to the development of biochemical separation methods: 1900–1980. Photosynth Res 76: 217–225

    Article  PubMed  CAS  Google Scholar 

  • Allen JF (2002) Plastoquinone redox control of chloroplast thylakoid protein phosphorylation and distribution of excitation energy between photosystems: discovery, background, implications. Photosynth Res 73: 139–148

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM (2002) Changing concepts about the distribution of Photosystems I and II between grana-appressed and stroma-exposed thylakoid membranes. Photosynth Res 73: 157–164

    Article  PubMed  CAS  Google Scholar 

  • Anderson JM and Andersson B (1981) Lateral organization of the chlorophyll-protein complexes of spinach thylakoids. In: Akoyunoglou G (ed) Photosynthesis, Vol III, Structure and Molecular Organisation of the Photosynthetic Apparatus, pp 23–31. Balaban International Science Services, Philadelphia, Pennsylvania

    Google Scholar 

  • Andersson B (1978) Separation of chloroplast lamella fragments by phase partition, including the isolation of inside-out vesicles. PhD thesis. Lund, Sweden

    Google Scholar 

  • Andersson B and Anderson JM (1980) Lateral heterogeneity in the distribution of the chlorophyll-protein complexes of the thylakoid membranes of spinach chloroplasts. Biochim Biophys Acta 593: 427–440

    Article  PubMed  CAS  Google Scholar 

  • Arnold WA and Azzi J (1971) Electric field and chloroplast membranes. In: Manson LA (ed) Biomembranes, Vol 2, pp 189–191. Plenum Press, New York

    Google Scholar 

  • Arnold WA and Davidson JB (1954) The identity of the fluorescence and delayed light emission spectra in Chlorella. J Gen Physiol 37: 677–684

    Article  PubMed  CAS  Google Scholar 

  • Arnold WA and Davidson JB (1963) The decay of delayed light at short times. In: Kok B and Jagendorf AT (eds) Photosynthetic Mechanisms of Green Plants, pp 689–700. National Academy of Sciences-National Research Council, Washington DC

    Google Scholar 

  • Arnold WA and Sherwood H (1957) Are chloroplasts semiconductors? Proc Natl Acad Sci USA 43: 105–114

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI (1992) Conceptual evolution in photosynthesis: the quest for a common denominator. In: Barber J, Guerroro MG and Medrano H (eds) Trends in Photosynthesis Research, pp 13–25. Intercept, Andover, UK

    Google Scholar 

  • Arnon DI and Barber J (1990) Photoreduction of NADP+ by isolated reaction centers of Photosystem II: requirement for plastocyanin. Proc Natl Acad Sci USA 87: 5930–5934

    Article  PubMed  CAS  Google Scholar 

  • Arnon DI and Tang GMS (1989) Photoreduction of NADP+ by a choloroplast Photosystem II preparation: effect of light intensity. FEBS Lett 25: 253–256

    Article  Google Scholar 

  • Barbato R, Friso G, Rigoni F, Dalla Vecchia F and Giacometti GM (1992) Structural changes and lateral redistribution of Photosystem II during donor side photoinhibition of thylakoids. J Cell Biol 119: 325–335

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1972a) A method of estimating the magnitude of the light-induced electrical potential across the thylakoid membrane. FEBS Lett 20: 251–254

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1972b) Stimulation of millisecond delayed light emission by KCl and NaCl gradients as a means of investigating the ionic permeability properties of the thylakoid membrane. Biochim Biophys Acta 275: 105–116

    Article  PubMed  CAS  Google Scholar 

  • Barber J (1976) Ionic regulation in intact chloroplasts and its effect on primary photosynthetic processes. In: Barber J (ed) The Intact Chloroplast, Vol 1, Topics in Photosynthesis, pp 89–134. Elsevier, Amsterdam

    Google Scholar 

  • Barber J (1979) Energy transfer and its dependence on membrane properties. In: Chlorophyll Organisation and Energy Transfer in Photosynthesis. Ciba Foundation Symp. London, Meeting No. 61 (Special Issue), pp 283–304. Elsevier, Amsterdam

    Google Scholar 

  • Barber J (1980a) An explanation for the relationship between salt-induced thylakoid stacking and chlorophyll fluorescence changes associated with changes in spillover of energy from Photosystem II to Photosystem I. FEBS Lett 118: 1–10

    Article  CAS  Google Scholar 

  • Barber J (1980b) Membrane surface charges and potentials in relation to photosynthesis. Biochim Biophys Acta 594: 253–308

    PubMed  CAS  Google Scholar 

  • Barber J (1982) Influence of surface charges on thylakoid structure and function. Ann Rev Plant Physiol 33: 261–295

    Article  CAS  Google Scholar 

  • Barber J (1994) Molecular basis of the vulnerability of Photosystem II to damage by light. Aust J Plant Physiol 22: 201–208

    Google Scholar 

  • Barber J (2001) P680: what is it and where is it? Bioelectrochemistry 55: 135–138

    Article  Google Scholar 

  • Barber J (2002) Photosystem II: a multisubunit membrane protein that oxidizes water. Curr Opin Struct Biol 12: 523–530

    Article  PubMed  CAS  Google Scholar 

  • Barber J (2003) Photosystem II: the engine of life. Biophys Quart Rev 36: 71–89

    Article  CAS  Google Scholar 

  • Barber J and Archer MD (2001) P680, the primary electron donor of PS II. Photochem Photobiol A Chemistry 142: 97–106

    Article  CAS  Google Scholar 

  • Barber J and Chow WS (1979) A mechanism for controlling the stacking and unstacking of chloroplast thylakoid membranes. FEBS Lett 105: 5–10

    Article  CAS  Google Scholar 

  • Barber J and Kraan GPB (1970) Salt induced light emission from chloroplasts. Biochim Biophys Acta 197: 49–95

    Article  PubMed  CAS  Google Scholar 

  • Barber J and Searle GFW (1978) Cation induced increase in chlorophyll fluorescence yield and the effect of electrical charge. FEBS Lett 92: 5–8

    Article  Google Scholar 

  • Barber J and Searle GFW (1979) Double layer theory and the effect of pH on cation-induced chlorophyll fluorescence. FEBS Lett 103: 241–245

    Article  CAS  Google Scholar 

  • Barber J, Mills JD and Nicholson J (1974a) Studies with cation specific ionophores show that within the intact chloroplast Mg2+ acts as the main exchange cation for H+-pumping. FEBS Lett 49: 106–109

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Telfer A, Mills JD and Barber J (1974b) Slow chlorophyll fluorescence changes in isolated intact chloroplasts. Evidence for cation control. In: Avron M (ed) Proceedings III International Congress Photosynthesis, pp 53–63. Elsevier, Amsterdam

    Google Scholar 

  • Barber J, Telfer A and Nicolson J (1974c) Evidence for divalent cation movement within isolated whole chloroplasts from studies with ionophore A23187. Biochim Biophys Acta 357: 161–165

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Mills JD and Love A (1977a) Electrical diffuse layers and their influence on photosynthetic processes. FEBS Lett 74: 174–181

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Mauro S and Lannoye R (1977b) The relationship between the yield factors for prompt and delayed fluorescence. FEBS Lett 80: 449–454

    Article  PubMed  CAS  Google Scholar 

  • Barber J, Rubin BT and Chow WS (1981) Theoretical aspects of cation induced chlorophyll fluorescence and thylakoid stacking changes. In: Akoyunoglou G (ed) Photosynthesis, Vol I, Photophysical Processes — Membrane Energization, pp 397–405. Balaban International Science Services, Philadelphia, Pennsylvania

    Google Scholar 

  • Barber J, Chapman DJ and Telfer A (1987) Characterisation of a photosystem two reaction centre isolated from the chloroplasts of Pisum sativum. FEBS Lett 220: 67–73

    Article  CAS  Google Scholar 

  • Barter LM, Durrant JR and Klug DR (2003) A quantitative structure-function relationship for Photosystem II reaction center: supermolecular behaviour in natural photosynthesis. Proc Natl Acad Sci USA 100: 946–951

    Article  PubMed  CAS  Google Scholar 

  • Bassi R, Ghiretti-Magaldhi A, Tognon G, Giacometti GM and Miller KR (1989) Two dimensional crystals of the Photosystem II reaction center complex from higher plants. Eur J Cell Biol 50: 84–93

    PubMed  CAS  Google Scholar 

  • Berthold DA, Babcock GT and Yocum CF (1981) A highly resolved, oxygen-evolving Photosystem II preparation from spinach thylakoid membranes: EPR and electron transport properties. FEBS Lett 134: 231–234

    Article  CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001a) Iron deficiency induces formation of an antenna ring around trimeric Photosystem I in cyanobacteria. Nature 412: 743–745

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J and Barber J (2001b) 3D model and characterization of the iron stress induced CP43′-PS I supercomplex isolated from the cyanobacteria Synechocystis PCC 6803. J Biol Chem 276: 43246–43252

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Partensky F and Barber J (2001c) Oxyphotobacteria: antennae ring around Photosystem I. Nature 413: 590

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Mary I, Nield J, Partensky F and Barber J (2003a) Low-light-adapted Prochlorococcus species possess specific antenna for each photosystem. Nature 424: 1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Bibby TS, Nield J, Chen M, Larkum AWA and Barber J (2003b) Structure of a Photosystem II supercomplex isolated from Prochloron didemni retaining its chlorophyll a/b light-harvesting system. Proc Natl Acad Sci USA 100: 9050–9054

    Article  PubMed  CAS  Google Scholar 

  • Boardman NK and Anderson JM (1964) Isolation from spinach chloroplasts of particles containing different proportions of chlorophyll a and chlorophyll b and their possible role in the light reactions of photosynthesis. Nature 203: 166–167

    Article  CAS  Google Scholar 

  • Boekema EJ, Hankamer B, Bald D, Kruip J, Nield J, Boonstra AF, Barber J and Rögner M (1995) Supramolecular structure of the photosynthetic complex from green plants and cyanobacteria. Proc Natl Acad Sci USA 92: 175–179

    Article  PubMed  CAS  Google Scholar 

  • Boekema EJ, Hifney A, Yakusheveska AE, Piotrowski M, Keegstra W, Berry S, Michel K-P, Pistorius EK and Kruip J (2001) A giant chlorophyll-protein complex induced by iron deficiency in cyanobacteria. Nature 412: 745–748

    Article  PubMed  CAS  Google Scholar 

  • Bonaventura C and Myers J (1969) Fluorescence and oxygen evolution from Chlorella pyrenoidosa. Biochim Biophys Acta 189: 366–383

    Article  PubMed  CAS  Google Scholar 

  • Briantais J-M, Vernotte C, Picaud M and Krause GH (1979) A quantitative study of the slow decline of chlorophyll a fluorescence in isolated chloroplasts. Biochim Biophys Acta 548: 128–138

    Article  PubMed  CAS  Google Scholar 

  • Brody SS (2002) Fluorescence lifetime, yield, energy transfer and spectrum in photosynthesis, 1950–1960. Photosynth Res 73: 127–132

    Article  PubMed  CAS  Google Scholar 

  • Chapman DJ, Gounaris K and Barber J (1988) Electron transport properties of the isolated D1-D2-cytochrome b559 Photosystem two reaction centre. Biochim Biophys Acta 933: 423–431

    Article  CAS  Google Scholar 

  • Chow WS and Barber J (1980) Further studies of the relationship between cation-induced chlorophyll fluorescence and thylakoid membrane stacking changes. Biochim Biophys Acta 593: 149–157

    Article  PubMed  CAS  Google Scholar 

  • Crystal B, Booth PJ, Klug DR, Barber J and Porter G (1989) Resolution of a long lived fluorescence component from D1-D2-cytochrome b559 reaction centres. FEBS Lett 249: 75–78

    Article  Google Scholar 

  • Debus RJ (2001) Amino acid residues that modulate the properties of tyrosine YZ and the manganese cluster in the water oxidizing complex of Photosystem II. Biochim Biophys Acta 1503: 164–186

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP and van Grondelle R (2000) Primary charge separation in Photosystem II. Photosynth Res 63: 195–208

    Article  PubMed  CAS  Google Scholar 

  • De Grooth BG and van Gorkom HJ (1981) External electric field effect on prompt and delayed fluorescence in chloroplasts. Biochim Biophys Acta 635: 445–456

    Article  PubMed  Google Scholar 

  • Diner BA (2001) Amino acid residues involved in the coordination and assembly of the Mn cluster of PS II. Proton-coupled electron transport of the redox-active tyrosines and its relationship to water oxidation. Biochim Biophys Acta 1503: 147–163

    Article  PubMed  CAS  Google Scholar 

  • Diner BA, Schlodder E, Nixon PJ, Coleman WJ, Rappaport F, Lavergne J, Vermaas WFJ and Chisholm DA (2001) Site directed mutations at D1-His189 and D2His197 of PS II in Synechocystis PCC 6803: sites of primary charge separation and cation and triplet stabilization. Biochemistry 40: 9265–9281

    Article  PubMed  CAS  Google Scholar 

  • Döring G, Stiehl H and Witt HT (1967) A second chlorophyll reaction in the electron chain of photosynthesis. Z Naturforsch 22b: 639–644

    Google Scholar 

  • Durrant JR, Giorgi LB, Barber J, Klug DR and Porter G (1990) Characterisation of triplet states in isolated Photosystem II reaction centres: oxygen quenching as a mechanism for photodamage. Biochim Biophys Acta 1017: 167–175

    Article  CAS  Google Scholar 

  • Durrant JR, Klug DR, Kwa SLS, van Grondelle R, Porter G and Dekker JP (1995) A multimer model for P680, the primary electron donor of Photosystem II. Proc Natl Acad Sci USA 92: 4798–4802

    Article  PubMed  CAS  Google Scholar 

  • Duysens LNM and Sweers HE (1963) Mechanism of two photochemical reactions in algae as studied by means of fluorescence. In: Ashida J (ed) Studies on Microalgae and Photosynthetic Bacteria, pp 353–372. University of Tokyo Press, Tokyo

    Google Scholar 

  • Ellenson JL and Sauer K (1976) The electrophotoluminescence of chloroplasts. Photochem Photobiol 23: 113–123

    PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J and Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303: 1831–1837

    Article  PubMed  CAS  Google Scholar 

  • Gounaris K, Chapman DJ, Booth P, Crystall B, Giorgi LB, Klug DR, Porter G and Barber J (1990) Comparison of the D1/D2/cyt b559 reaction centre complex of photosystem two isolated by two different methods. FEBS Lett 265: 88–92

    Article  PubMed  CAS  Google Scholar 

  • Govindjee (1995) Sixty-three years since Kautsky: chlorophyll a fluorescence. Aust J Plant Physiol 22: 131–161

    Article  CAS  Google Scholar 

  • Govindjee and Papageorgiou G (1971) Chlorophyll fluorescence and photosynthesis: fluorescence transients. In: Giese AC (ed) Photophysiology, Vol VI, pp 1–46. Academic Press, New York

    Google Scholar 

  • Hankamer B, Barber J and Boekema EJ (1997a) Structure and membrane organization of PS II in green plants. Annu Rev Plant Phys Mol Biol 48: 641–671

    Article  CAS  Google Scholar 

  • Hankamer B, Nield J, Zheleva D, Boekema EJ, Jansson S and Barber J (1997b) Isolation and biochemical characterization of monomeric and dimeric PS II complexes from spinach and their relevance to the organization of Photosystem II in vivo. Eur J Biochem 243: 422–429

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris EP and Barber J (1999) Cryoelectron microscopy of photosystem two shows that CP43 and CP47 are located on opposite sides of the D1/D2 reaction centre proteins. Nature Struct Biol 6: 560–564

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris EP, Nield J, Gerle C and Barber J (2001a) Three dimensional structure of Photosystem II core dimer of higher plants determined by electron microscopy. J Struct Biol 135: 262–269

    Article  PubMed  CAS  Google Scholar 

  • Hankamer B, Morris EP, Nield J, Carne A and Barber J (2001b) Subunit positioning and transmembrane helix organization in the core dimer of Photosystem II. FEBS Lett 504: 142–151

    Article  PubMed  CAS  Google Scholar 

  • Henderson R and Unwin PNT (1975) Three-dimensional model of purple membrane obtained by electron microscopy. Nature 257: 28–32

    Article  PubMed  CAS  Google Scholar 

  • Hill R and Bendall F (1960) Function of two cytochrome components in chloroplasts: a working hypothesis. Nature 186: 136–137

    Article  CAS  Google Scholar 

  • Hipkins MF and Barber J (1974) Estimation of the activation energy for millisecond delayed fluorescence from uncoupled chloroplasts. FEBS Lett 42: 289–292

    Article  PubMed  CAS  Google Scholar 

  • Hoganson CW and Babcock GT (1997) A metalloradical mechanism for the generation of oxygen from water in photosynthesis. Science 277: 1953–1956

    Article  PubMed  CAS  Google Scholar 

  • Holzenburg A, Bewley MC, Wilson FH, Nicolson WV and Ford RC (1993) Three-dimensional structure of Photosystem II. Nature 363: 470–472

    Article  CAS  Google Scholar 

  • Homann P (1969) Cation effects on the fluorescence of isolated chloroplasts. Plant Physiol 44: 932–936

    Article  PubMed  CAS  Google Scholar 

  • Hu Q, Miyashita H, Iwasaki I, Kurano N, Miyachi S, Iwaki M and Itoh S (1998) A Photosystem I reaction center driven by chlorophyll d in oxygenic photosynthesis. Proc Natl Acad Sci USA 95: 13319–13323

    Article  PubMed  CAS  Google Scholar 

  • Ikeuchi M, Shukla VK, Pakrasi HB and Inoue Y (1995) Directed inactivation of the pcbI gene does not affect Photosystem II in cyanobacterium Synechocystis sp. PPP 6803. Mol Gen Genet 249: 622–628

    Article  PubMed  CAS  Google Scholar 

  • Jackson JB and Crofts AR (1969) The high energy state in chromatophores from Rhodopseudomonas sphaeroides. FEBS Lett 4: 185–189

    Article  PubMed  CAS  Google Scholar 

  • Jagendorf AT and Uribe E (1966) ATP formation caused by acid-base transition of spinach chloroplasts. Proc Natl Acad Sci USA 55: 170–177

    Article  PubMed  CAS  Google Scholar 

  • Joliot A and Joliot P (1964) Étude cinétique de la réaction photochimique libérant l’oxygène au cours de la photosynthèse. CR Acad Sci Paris 258: 4622–4625

    CAS  Google Scholar 

  • Joliot P and Joliot A (2003) Excitation transfer between photosynthetic units: the 1964 experiment. Photosynth Res 76: 241–245

    Article  PubMed  CAS  Google Scholar 

  • Kamiya N and Shen JR (2003) Crystal structure of oxygen-evolving Photosystem II from Thermosynechococcus vulcanus at 3.7Å resolution. Proc Natl Acad Sci USA 100: 98–102

    Article  PubMed  CAS  Google Scholar 

  • Kautsky H, Appel N and Amann H (1960) Chlorophyll Fluorescenz und Kohlensäure Assimilation XIII. Die Fluorescenz Kurve und die Photochemie der Pflanze. Biochem Z 332: 277–292

    PubMed  CAS  Google Scholar 

  • Klug DR, Durrant JR and Barber J (1998) The entanglement of excitation energy transfer and electron transfer in the reaction centre of Photosystem II. Phil Trans R Soc London A 356: 449–464

    CAS  Google Scholar 

  • Kok B and Cheniae G (1966) Kinetics and intermediates of the oxygen evolution step in photosynthesis In: Sanadi R (ed) Current Topics in Bioenergetics, Vol 1, pp 1–47. Academic Press, New York

    Google Scholar 

  • Krause GH (1974) Changes in chlorophyll fluorescence in relation to light-dependent cation transfer across thylakoid membranes. Biochim Biophys Acta 333: 301–313

    Article  CAS  PubMed  Google Scholar 

  • Krause GH, Vernotte C and Briantais J-M (1982) Photoinduced quenching of chlorophyll fluorescence in intact chloroplasts and algae, resolution into two components. Biochim Biophys Acta 679: 116–124

    Article  CAS  Google Scholar 

  • Krauß N, Schubert W-D, Klukas O, Fromme P, Witt HT and Saenger W (1996) Photosystem I at 4Å resolution represents the first structural model of a joint photosynthetic reaction centre and core antenna system. Nat Struct Biol 3: 965–973

    Article  PubMed  Google Scholar 

  • Kühlbrandt W, Wang DN and Fujiyoshi Y (1994) Atomic model for plant light harvesting complex by electron crystallography. Nature 367: 614–621

    Article  PubMed  Google Scholar 

  • Kunster P, Guardiola A, Takahashi Y and Rochaix JD (1995) A mutant strain of Chlamydomonas reinhardtii lacking the chloroplast Photosystem II psbI gene grows photoautotrophically. J Biol Chem 270: 9651–9654

    Article  Google Scholar 

  • Lavorel J (1959) Induction of fluorescence in quinone poisoned Chlorella. Plant Physiol 34: 204–209

    Article  PubMed  Google Scholar 

  • Lavorel J (1968) Sur une relation entre fluorescence et luminescence dans les systemes photosynthetiques. Biochim Biophys Acta 153: 727–730

    Article  PubMed  CAS  Google Scholar 

  • Lyon MK, Marr KM and Furcinitti PS (1993) Formation and characterization of two-dimensional crystals of Photosystem II. J Struct Biol 110: 133–140

    Article  PubMed  CAS  Google Scholar 

  • Malkin S and Kok B (1966) Fluorescence induction studies in isolated chloroplast. I. Number of components involved in the reaction and quantum yields. Biochim Biophys Acta 126: 413–432

    PubMed  CAS  Google Scholar 

  • Marder JB, Chapman DJ, Telfer A, Nixon PJ and Barber J (1987) Identification of psbA and psbD gene products, D1 and D2, as reaction centre proteins of Photosystem 2. Plant Mol Biol 8: 325–333

    Article  Google Scholar 

  • Mayes SR, Cook KM, Self SJ, Zhang ZH and Barber J (1991) Deletion of the gene encoding the PS II 33 kDa protein from Synechocystis PCC 6803 does not inactivate water-splitting but increases vulnerability to photoinhibition. Biochim Biophys Acta 1060: 1–12

    CAS  Google Scholar 

  • Mayes SR, Dubbs JM, Vass I, Hideg E, Nagy L and Barber J (1993) Further characterization of the psbH locus of Synechocystis sp. PCC 6803: inactivation of psbH impairs QA and QB electron transport in photosystem 2. Biochemistry 32: 1454–1465

    Article  CAS  Google Scholar 

  • Mayne BC and Clayton RK (1966) Luminescence of chlorophyll in spinach chloroplasts induced by acid-base transitions. Proc Natl Acad Sci USA 55: 494–497

    Article  PubMed  CAS  Google Scholar 

  • McTavish H, Picorel R and Seibert M (1989) Stabilization of isolated Photosystem II reaction center complex in the dark and in the light using polyethylene glycol and an oxygen-scrubbing system. Plant Physiol 89: 452–456

    PubMed  CAS  Google Scholar 

  • Mills JD and Barber J (1975) Energy-dependent cation induced control of chlorophyll a fluorescence in isolated intact chloroplasts. Arch Biochem Biophys 170: 306–314

    Article  PubMed  CAS  Google Scholar 

  • Mimuro M (2002) Visualization of excitation energy transfer processes in plants and algae. Photosynth Res 73: 133–138

    Article  PubMed  CAS  Google Scholar 

  • Mitchell P (1966) Chemiosmotic coupling in oxidative and photosynthetic phosphorylation. Biol Rev Cambridge Phil Soc 41: 445–502

    CAS  Google Scholar 

  • Miyashita H, Ikemoto H, Kurano N, Adachi K, Chihara M and Miyachi S (1996) Chlorophyll d as a major pigment. Nature 383: 402

    Article  CAS  Google Scholar 

  • Mohanty P, Braun BZ and Govindjee (1973) Light-induced slow changes in chlorophyll a fluorescence in isolated chloroplasts: effects of magnesium and phenazine methosulfate. Biochim Biophys Acta 292: 459–476

    Article  PubMed  CAS  Google Scholar 

  • Morris EP, Hankamer B, Zheleva D, Friso G and Barber J (1997) The 3D structure of a Photosystem II core complex determined by electron crystallography. Structure 5: 837–849

    Article  PubMed  CAS  Google Scholar 

  • Munday JC and Govindjee (1969) Light-induced changes in the fluorescence yield of chlorophyll-a in vivo III. The dip and the peak in fluorescence transients of Chorella pyrenoidosa. Biophys J 9: 1–21

    PubMed  CAS  Google Scholar 

  • Murakami S and Packer L (1971) The role of cations in the organization of chloroplast membranes. Arch Biochem Biophys 146: 337–347

    Article  PubMed  CAS  Google Scholar 

  • Murata N (1969) Control of excitation energy transfer in photosynthesis I. Light-induced change of chlorophyll a fluorescence. Biochim Biophys Acta 172: 242–251

    Article  PubMed  CAS  Google Scholar 

  • Nakatani HY and Barber J (1980) Further studies of thylakoid membrane surface charges by particle electrophoresis. Biochim Biophys Acta 591: 82–91

    Article  PubMed  CAS  Google Scholar 

  • Nakazato K, Toyoshima C, Enami I and Inoue Y (1996) Two-dimensional crystallization and cryo electron microscopy of Photosystem II. J Mol Biol 257: 225–232

    Article  PubMed  CAS  Google Scholar 

  • Nanba O and Satoh K (1987) Isolation of a Photosystem II reaction center consisting of D1 and D2 polypeptides and cytochrome b559. Proc Natl Acad Sci USA 84: 109–112

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Orlova E, Morris E, Gowen B, van Heel M and Barber J (2000a) 3D map of plant Photosystem II supercomplex obtained by cryoelectron microscopy and single particle analysis. Nat Struct Biol 7: 44–47

    Article  PubMed  CAS  Google Scholar 

  • Nield J, Funk C and Barber J (2000b) Supermolecular structure of Photosystem two and location of the PsbS protein. Phil Trans R Soc London B 355: 1337–1344

    Article  CAS  Google Scholar 

  • Nield J, Balsera M, Dr Las Rivas J and Barber J (2002) 3D cryo-EM study of the extrinsic domains of the oxygen evolving complex of spinach. Assignment of the PsbO protein. J Biol Chem 277: 15006–15012

    Article  PubMed  CAS  Google Scholar 

  • Ojakian GK and Satir P (1974) Particle movements in chloroplast membranes: quantitative measurements of membrane fluidity by freeze-fracture technique. Proc Natl Acad Sci USA 21: 2052–2054

    Article  Google Scholar 

  • Olson JM and Blankenship RE (2004) Thinking about the evolution of photosynthesis. Photosynth Res 80: 373–386

    Article  PubMed  CAS  Google Scholar 

  • Park R and Sane PV (1971) Distribution of function and structure in chloroplast lamellae. Annu Rev Plant Physiol 22: 395–430

    Article  CAS  Google Scholar 

  • Pecoraro VL, Baldwin MJ, Hsieh W-Y and Law NA (1998) A proposal for water oxidation in Photosystem II. Pure Appl Chem 70: 925–929

    CAS  Google Scholar 

  • Peter GF and Thornber JP (1991) Biochemical composition and organization of higher plant Photosystem II light harvesting pigment-proteins. J Biol Chem 266: 16745–16754

    PubMed  CAS  Google Scholar 

  • Porter G, Tredwell CJ, Searle GFW and Barber J (1978) Picosecond time resolved energy transfer in Porphyridium cruentum Part I. In the intact alga. Biochim Biophys Acta 501: 232–245

    Article  PubMed  CAS  Google Scholar 

  • Prokhorenko VI and Holzwarth AR (2000) Primary processes and structure of Photosystem II reaction center: a photon echo study. J Phys Chem 104: 11563–11578

    CAS  Google Scholar 

  • Renger G (2003) Apparatus and mechanism of photosynthetic oxygen evolution: a personal perspective. Photosynth Res 76: 269–288

    Article  PubMed  CAS  Google Scholar 

  • Rhee KH (1998) Three dimensional structure of Photosystem II reaction center by electron cryo-microscopy. PhD thesis. University of Frankfurt, Germany

    Google Scholar 

  • Rhee KH, Morris EP, Zheleva D, Hankamer B, Kühlbrandt W and Barber J (1997) Two dimensional structure of plant Photosystem II at 8Å resolution. Nature 389: 522–526

    Article  CAS  Google Scholar 

  • Rhee KH, Morris EP, Barber J and Kühlbrandt W (1998) Three dimensional structure of the Photosystem II reaction centre at 8Å resolution. Nature 396: 283–286

    Article  PubMed  CAS  Google Scholar 

  • Rubin B and Barber J (1980) The role of membrane surface charge in the control of photosynthetic processes and involvement of electrostatic screening. Biochim Biophys Acta 592: 87–102

    Article  PubMed  CAS  Google Scholar 

  • Rutherford AW, Govindjee and Inoue Y (1984) Charge accumulation and photochemistry in leaves studied by thermoluminescence and delayed light emission. Proc Natl Acad Sci USA 81: 1107–1111

    Article  PubMed  CAS  Google Scholar 

  • Sane PV, Goodchild DJ and Park RB (1970) Characterization of chloroplast Photosystems 1 and 2 separated by a non-detergent method. Biochim Biophys Acta 218: 162–178

    Google Scholar 

  • Satoh K (2003) The identification of the Photosystem II reaction center: a personal story. Photosynth Res 76: 233–240

    Article  PubMed  CAS  Google Scholar 

  • Schubert W-D, Klukas O, Saenger W, Witt HT, Fromme P and Krauß N (1998) A common ancestor for oxygenic and anoxygenic photosynthetic systems — a comparison based on the structural model of Photosystem I. J Mol Biol 280: 297–314

    Article  PubMed  CAS  Google Scholar 

  • Seibert M (1995) Reflections on the nature and function of the Photosystem II reaction centre. Aust J Plant Physiol 22: 161–166

    CAS  Google Scholar 

  • Seibert M and Wasielewski MR (2003) The isolated Photosystem II reaction center: first attempts to directly measure the kinetics of primary charge separation. Photosynth Res 76: 263–268

    Article  PubMed  CAS  Google Scholar 

  • Seibert M, DeWit M and Staehelin LA (1987) Structural localization of the oxygen evolving apparatus to multimeric (tetrameric) particles on the lumenal surface of freeze-etched photosynthetic membranes. J Cell Biol 105: 2257–2265

    Article  PubMed  CAS  Google Scholar 

  • Seibert M, Picorel R, Rubin AB and Connolly JS (1988) Spectral, photophysical, and stability properties of isolated Photosystem II reaction center. Plant Physiol 87: 303–306

    PubMed  CAS  Google Scholar 

  • Siegbahn PEM (2002) Quantum chemical studies of manganese centers in biology. Curr Opin Chem Biol 6: 227–235

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA (1976) Reversible particle movements associated with unstacking and restacking of chloroplast membranes. J Cell Biol 71: 136–158

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA (2003) Chloroplast structure: from chlorophyll granules to supra-molecular architecture of thylakoid membranes. Photosynth Res 76: 185–196

    Article  PubMed  CAS  Google Scholar 

  • Staehelin LA, Armond PA and Miller KR (1976) Chloroplast membrane organization at the supramolecular level and its functional implications. Brookhaven Symp Biol 28: 278–315

    PubMed  Google Scholar 

  • Strehler B and Arnold W(1951) Light production from green plants. J Gen Physiol 34: 809–820

    Article  PubMed  CAS  Google Scholar 

  • Svensson B, Etchebest C, Tuffrey P, van Kan P, Smith J, Styring S (1996) A model for the Photosystem II reaction center core including the structure of the primary donor P680. Biochemistry 35: 14486–14502

    Article  PubMed  CAS  Google Scholar 

  • Telfer A, Bishop SM, Phillips D and Barber J (1994) Isolated photosynthetic reaction center of Photosystem II as a sensitizer for the formation of singlet oxygen: detection and quantum yield determination using a chemical trapping technique. J Biol Chem 269: 13244–13253

    PubMed  CAS  Google Scholar 

  • Vass I (2003) The history of photosynthetic thermoluminescence. Photosynth Res 76: 303–318

    Article  PubMed  CAS  Google Scholar 

  • Vass I and Inoue Y (1992) Thermoluminescence in the study of Photosystem II. In: Barber J (ed) Topics in Photosynthesis, Vol 11, pp 259–294. Elsevier, Amsterdam

    Google Scholar 

  • Vrettos JS, Limburg J and Brudvig GW (2001) Mechanism of photosynthetic water oxidation; combining biophysical studies of PS II with inorganic model chemistry. Biochim Biophys Acta 1503: 229–245

    Article  PubMed  CAS  Google Scholar 

  • Wakoo N, Yokoi N, Isoyama N, Hiraishi A, Shimada K, Kobayashi M, Kise H, Iwaki M, Itoh S, Takaichi S and Sakurai Y (1996) Discovery of natural photosynthesis using Zn-containing bacteriochlorophyll in an aerobic bacterium Acidiphilium rubrum. Plant Cell Physiol 37: 889–893

    Google Scholar 

  • Wasielewski M, Johnson DG, Preston C, Govindjee and Seibert M (1989) Determination of the primary charge separation rate in isolated Photosystem II reaction centers with 500 fs-time resolution. Proc Natl Acad Sci USA 86: 524–528

    Article  PubMed  CAS  Google Scholar 

  • Witt HT (2004) Steps on the way to building blocks, topologies, crystals and X-ray structural analysis of Photosystems I and II of water-oxidizing photosynthesis. Photosynth Res 80: 85–107

    Article  CAS  Google Scholar 

  • Wraight CA and Crofts AR (1970) Energy-dependent quenching of chlorophyll a fluorescence in isolated chloroplasts. Eur J Biochem 17: 319–327

    Article  PubMed  CAS  Google Scholar 

  • Wraight CA and Crofts AR (1971) Delayed fluorescence and the high energy state of chloroplasts. Eur J Biochem 19: 386–397

    Article  PubMed  CAS  Google Scholar 

  • Zhang ZH, Mayes SR, Vass I, Nagy L and Barber J (1993) Characterisation of the psbK locus of Synechocystis sp. PCC 6803 in terms of PS II function. Photosynth Res 38: 369–377

    Article  CAS  Google Scholar 

  • Zheleva D, Sharma J, Panico M, Morris HR and Barber J (1998) Isolation and characterization of monomeric and dimeric CP47-RC PS II complexes. J Biol Chem 273: 16122–16127

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Jordan R, Schlodder E, Fromme P and Witt HT (2000) First Photosystem II crystals capable of water oxidation. Biochim Biophys Acta 1457: 103–105

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauß N, Saenger W and Orth P (2001) Crystal structure of Photosystem II form Synechococcus elongatus at 3.8Å resolution. Nature 409: 739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Barber, J. (2005). Engine of life and big bang of evolution: a personal perspective. In: Govindjee, Beatty, J.T., Gest, H., Allen, J.F. (eds) Discoveries in Photosynthesis. Advances in Photosynthesis and Respiration, vol 20. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3324-9_28

Download citation

Publish with us

Policies and ethics