Advertisement

Synthesis of Nanocrystalline Diamond Films in Ar/H2/CH4 Microwave Discharges

  • F. Bénédic
  • F. Mohasseb
  • P. Bruno
  • F. Silva
  • G. Lombardi
  • K. Hassouni
  • A. Gicquel
Conference paper
Part of the NATO Science Series book series (NAII, volume 192)

Abstract

This work deals with the investigation of the microwave plasma assisted CVD process employed for nanocrystalline diamond (NCD) deposition, using an Ar/H2/CH4 feed gas. The different steps required in order to insure the process control and optimization are considered. The stable process parameters providing the discharge stability and reproducibility are first determined. Then, the influence of the growth parameters on the film characteristics is examined. In particular, the effect of the surface temperature is probed combining both in-situ and ex-situ measurements. Finally, the potentiality of NCD films for the achievement of high frequency surface acoustic wave devices is illustrated.

Keywords

nanocrystalline diamond microwave plasma CVD process control film characterization pyrometric interferometry surface acoustic waves 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D.M. Gruen, X. Pan, A.R. Krauss, S. Liu, J. Luo, and C.M. Foster. Deposition and characterization of nanocrystalline diamond films. Journal of Vacuum Science and Technology A 12, 1491 (1994).CrossRefGoogle Scholar
  2. 2.
    D.M. Gruen. Nanocrystalline diamond films. Annual Review of Materials Science 29, 211 (1999).Google Scholar
  3. 3.
    V.I. Konov, A.A. Smolin, V.G. Ralchenko, S.M. Pimenov, E.D. Obraztsova, E.N. Loubnin, S.M. Metev, and G. Sepold. DC arc plasma deposition of smooth nanocrystalline diamond films. Diamond and Related Materials 4, 1073 (1995).CrossRefGoogle Scholar
  4. 4.
    T. Lin, G.Y. Yu, A.T.S. Wee, Z.X. Shen, and K.P. Loh. Compositional mapping of the argon-methane-hydrogen system for polycrystalline to nanocrystalline diamond film growth in a hot-filament chemical vapor deposition system. Applied Physics Letters 77, 2692 (2000).Google Scholar
  5. 5.
    S.N. Kundu, M. Basu, A.B. Maity, S. Chaudhuri, and A.K. Pal. Nanocrystalline diamond films deposited by high pressure sputtering of vitreous carbon. Materials Letters 31, 303 (1997).Google Scholar
  6. 6.
    K. Okada, T. Aizawa, R. Souda, S. Komatsu, and S. Matsumoto. Vibrational studies of microcrystalline diamond and diamond-like carbon by high resolution electron energy loss spectroscopy. Diamond and Related Materials 10, 1991 (2001).Google Scholar
  7. 7.
    L.C Chen, P.D. Kichambare, K.H. Chen, J.-J. Wu, J.R. Yang, and S.T. Lin. Growth of highly transparent nanocrystalline diamond films and a spectroscopic study of the growth. Journal of Applied Physics 89, 753 (2001).Google Scholar
  8. 8.
    D.M. Bhusari, J.R. Yang, T.Y. Wang, K.H. Chen, S.T. Lin, and L.C. Chen. Effects of substrate pretreatment and methane fraction on the optical transparency of nanocrystaline diamond thin films. Journal of Materials Research 13, 1769 (1998).Google Scholar
  9. 9.
    D. Zhou, T.G. McCauley, L.C. Qin, A.R. Krauss, and D.M. Gruen. Synthesis of nanocrystalline diamond films from an Ar-CH4 microwave plasma. Journal of Applied Physics 83, 540 (1998).Google Scholar
  10. 10.
    D. Zhou, D.M. Gruen, L.C. Qin, T.G. McCauley, and A.R. Krauss. Control of diamond film microstructure by Ar addition to CH4/H2 microwave plasmas. Journal of Applied Physics 84, 1981 (1998).CrossRefGoogle Scholar
  11. 11.
    K. Hassouni, T.A. Grotjohn, and A. Gicquel. Self-consistent microwave field and plasma discharge simulations for a moderate pressure hydrogen discharge reactor. Journal of Applied Physics 86, 134 (1999).Google Scholar
  12. 12.
    F. Bénédic, M. Belmahi, T. Easwarakhanthan, and P. Alnot. In-situ optical characterization during MPACVD diamond film growth on silicon substrates using a bichromatic infrared pyrometer under oblique incidence. Journal of Physics D: Applied Physics 34, 1048 (2001).Google Scholar
  13. 13.
    P. Bruno, F. Bénédic, F. Mohasseb, F. Silva, and K. Hassouni. Effects of substrate temperature on nanocrystalline diamond growth: an in-situ optical study using pyrometric interferometry, Thin Solid Films, in press.Google Scholar
  14. 14.
    R. Haubner and B. Lux. Deposition of ballas diamond and nano-crystalline diamond. International Journal of Refractory Metals and Hard Materials 20, 93 (2002).Google Scholar
  15. 15.
    A.C. Ferrari and J. Robertson. Origin of the 1150 cm−1 Raman mode in nanocrystalline diamond, Physical Review B: Condensed Matter 63, 121405(R) (2001).Google Scholar
  16. 16.
    R. Pfeiffer, H. Kuzmany, N. Salk, and B. Günther. Evidence for trans-polyacetylene in nanocrystalline diamond films from H-D isotropic substitution experiments. Applied Physics Letters 82, 4149 (2003).Google Scholar
  17. 17.
    H. Nakahata, S. Fujii, K. Higaki, A. Hachigo, H. Kitabayashi, S. Shikata, and N. Fujimori. Diamond-based surface acoustic wave devices. Semiconductor Science and Technology 18, S96–S104 (2003).Google Scholar
  18. 18.
    V. Mortet, O. Elmazria, M. Nesladek, M.B. Assouar, G. Vanhoyland, J. D’Haen, M. D’Olieslaeger, and P. Alnot. Surface acoustic wave propagation in aluminum nitride-unpolished freestanding diamond structures. Appl. Phys. Letters 81, 1720 (2002).Google Scholar
  19. 19.
    M.B. Assouar, O. Elmazria, L. Le Brizoual, P. Alnot. Reactive DC magnetron sputtering of aluminum nitride films for surface acoustic wave devices. Diamond and Related Materials 11, 413 (2002).Google Scholar
  20. 20.
    F. Bénédic, M.B. Assouar, F. Mohasseb, O. Elmazria, P. Alnot, and A. Gicquel. Surface acoustic wave devices based on nanocrystalline diamond and aluminium nitride. Diamond and Related Materials 13, 347 (2004).Google Scholar
  21. 21.
    H. Nakahata, H. Kitabayashi, T. Uemura, A. Hachigo, K. Higaki, S. Fujii, Y. Seki, K. Yoshida, and S. Shikata. Study on surface acoustic wave characteristics of SiO2/interdigital-transducer/ZnO/diamond structure and fabrication of 2.5 GHz narrow band filter. Japanese Journal of Applied Physics 37, 2918 (1998).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • F. Bénédic
    • 1
  • F. Mohasseb
    • 1
  • P. Bruno
    • 1
  • F. Silva
    • 1
  • G. Lombardi
    • 1
  • K. Hassouni
    • 1
  • A. Gicquel
    • 1
  1. 1.Laboratoire d’Ingénierie des Matiriaux et des Hautes PressionsVilletaneuseFrance

Personalised recommendations