Skip to main content

Diamond Molecules Found in Petroleum

New Members of the H-Terminated Diamond Series

  • Conference paper

Part of the book series: NATO Science Series ((NAII,volume 192))

Abstract

We recently reported [1,2] the discovery and isolation of new members of the hydrogen-terminated diamond series, ∼1 to ∼2 nm sized higher diamondoids from petroleum. Crystallographic studies [1,2] revealed a wealth of diamond molecules that are nanometer-sized rods, helices, discs, pyramids, etc. Highly rigid, well-defined, readily derivatizable structures make them valuable molecular building blocks for nanotechnology. We now produce certain higher diamondoids in gram quantities. Although more stable than graphite particles of comparable size, higher diamondoids are extraordinarily difficult to synthesize. Attempts to synthesize them were abandoned in the 1980’s. We examined extracts of diamond-containing materials synthesized by CO2 laser-induced gas-phase synthesis [3] and commercial CVD in an attempt to detect diamantane to undecamantane. However, high-sensitivity GCMS detected no diamondoids in these materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J.E. Dahl, S.G. Liu, and R.M.K. Carlson. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299, 96–9 (2003).

    Article  PubMed  Google Scholar 

  2. J.E.P. Dahl, Moldowan J.M., T.M. Peakman, J.C. Clardy, E. Lobkovsky, M.M. Olmstead, P.W. May, T.J. Davis, J.W. Steeds, K.E. Peters, A. Pepper, and R.M.K. Carlson. Isolation and structure proof of the large diamond molecule, cyclohexamantane, C26H30. Angew. Chem. Internat. 42, 2040–44 (2003).

    Google Scholar 

  3. P.R. Buerki and S. Leutwyler. CO2-laser-induced gas-phase synthesis of micron-sized diamond powders: recent results and future developments. Diamond and Related Materials 2, 174–82 (1993).

    Google Scholar 

  4. G. Timp. Nanotechnology. New York: Springer-Verlag, 1999.

    Google Scholar 

  5. K.E. Drexler. Nanosystems: Molecular Machinery, Manufacturing, and Computation. New York: Wiley, 1992.

    Google Scholar 

  6. T. Cagin, J. Che, M.N. Gardo, A. Fijany, and W.A. Goddard. Simulation and experiments on friction and wear of diamond: a material for MEMS and NEMS application. Nanotechnology 10, 278 (1999).

    Google Scholar 

  7. D.W. Brenner, O.A. Shenderova, D.A. Areshkin, J.D. Schall, and S.-J.V. Frankland Comput. Model. Engin. Sci. 3, 643 (2002).

    Google Scholar 

  8. W.H. Bragg and W.L. Bragg. The structure of diamond. Nature 91, 557 (1913).

    Google Scholar 

  9. T.R. Anthony. Synthesis of metastable diamond. Mat. Res. Soc. Symp. Proc. 162, 61–3 (1990).

    Google Scholar 

  10. W. Piekarczyk. Crystal growth of CVD diamond and some of its peculiarities. Cryst. Res. Technol. 34, 553–63 (1999).

    Google Scholar 

  11. R.C. Fort. Adamantane, the chemistry of diamond molecules. New York: Dekker, 1976.

    Google Scholar 

  12. R.S. Schwab, D.C. Poskanzer, A.C. England, and R.R. Young. Amantadine in the treatment of Parkinson’s disease. Review of more than two years’ experience. J. Amer. Med. Assoc. 222, 792–95 (1972).

    Google Scholar 

  13. M.A. Meador. Recent advances in the development of processable high temperature polymers. Annu. Rev. Mater. Sci. 28, 599 (1998).

    Google Scholar 

  14. A.P. Marchand. Polycyclic Cage Compounds: Reagents, Substrates, and Materials for the 21st Century. Aldrichimica Acta 28, 95 (1995).

    Google Scholar 

  15. K. Tominaga and M. Haga. Next generation fine chemicals raw material — adamantane. Chem. Econ. Eng. Rev. 17, 23 (1985).

    Google Scholar 

  16. C.E. Nordman and D.L. Schmitkons. Phase transition and crystal structures of adamantane. Acta Cryst. 18, 764–7 (1965).

    Google Scholar 

  17. C.G. Windsor, D.H. Suanderson, J.N. Sherwood, D. Taylor, and G.S. Pawley. Lattice dynamics od adamantane in the disordered phase. J. Phys. C: Solid State 11, 1741–59 (1978).

    Google Scholar 

  18. T.E. Jenkins and J.A Lewis. Raman study of adamantane (C10H16), diamantane (C14,H20) and triamantane (C18H24) between 10K and room temperatures. Spectrochim. Acta 36A, 259–64 (1980).

    Google Scholar 

  19. A.T. Balaban and P. von R. Schleyer. Systematic classification and nomenclature of diamond hydrocarbons. Tetrahedron 34, 3599–609 (1978).

    Google Scholar 

  20. J.Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, L.J. Terminello. Next generation fine chemicals raw material — adamantane. Phys. Rev. Lett. 90, 037401 (2003).

    PubMed  Google Scholar 

  21. P. Badziag, W.S. Verwoerd, W.P. Ellis, and N.R. Greiner. Nanometer-sized diamonds are more stable than graphite. Nature 343, 244–5 (1990).

    Google Scholar 

  22. A.S. Barnard, N.A. Marks, S.P. Russo, and I.K. Snook. Hydrogen Stabilization of the (111) Nanodiamond. Mat. Res. Soc. Symp. Proc. 740, 13.4.1–13.4.6 (2003).

    Google Scholar 

  23. N.W. Winter and F.H. Ree. Carbon particle phase stability as a function of size. J. Computer-Aided Materials Design, 5, 279–94 (1998).

    Google Scholar 

  24. S. Prawer, J.L. Peng, J.O. Orwa, J.C. McCallum, D.N. Jamieson, and L.A. Bursill. Size dependence of structural stability of nanocrystalline diamond. Phys. Rev. B.; 62, R16 360–3 (2000).

    Google Scholar 

  25. J.C. Angus. Thermodynamic and kinetic issues of metastable diamond growth. In Properties, Growth and Applications of Diamond, M. H. Nazaré, A. J. Neves, Ed., London: Inspec, pp. 256–61, 2001.

    Google Scholar 

  26. V. Prelog and R. Seiwerth. Synthesis of adamantane. Ber. 74B, 1644 (1941).

    Google Scholar 

  27. P.v.R. Schleyer. A simple preparation of adamantane. J. Am. Chem. Soc. 79, 3292 (1957).

    Google Scholar 

  28. C. Cupas, P.v.R. Schleyer, and D.J. Trecker. Congressane. J Am. Chem. Soc. 87, 917 (1965).

    Google Scholar 

  29. H.W. Whitlock and M.W. Sieflkien. Tricyclo[4.4.0.03,8]decane to adamantane rearrangement. J. Am. Chem. Soc. 90, 4929–39 (1968).

    Google Scholar 

  30. R.P. Kirchen, T.D. Sorensen, and S.M. Whitworth. A mechanistic study of the carbocation route from tetrahydrodicyclopentadiene to the adamantane ring. Can. J. Chem. 71, 2016–27 (1993).

    Google Scholar 

  31. E. Osawa, K. Algami, N. Takaishi, Y. Inamoto, Y. Fujikura, Z. Majerski, P.v.R. Schleyer, E.M. Engler, and M. Farcasiu. The mechanism of carbonium ion rearrangements of the tricycloundecanes elucidated by empirical force field calculations. J. Am. Chem. Soc. 99, 5361–73 (1977).

    Google Scholar 

  32. T.M. Grund, P.v.R. Schleyer, P.H. Gund, and W.T. Wipke. Computer assisted graph theoretical analysis of complex problems in polycyclic hydrocarbons. The mechanism of diamantane formation from various pentacyclotetradecanes. J. Am. Chem. Soc. 114, 497–505 (1975).

    Google Scholar 

  33. F.S. Hollowood and M.A. McKervey. Synthesis of triamantane. J. Org. Chem. 45, 4954 (1980).

    Google Scholar 

  34. O. Farooq, S. Morteza, F. Farnia, M. Stephenson, and G. Olah. A Superacid-Catalyzed Near Quantitative Isomerization of C4n+6H4n+12 (n = 1–3). J. Org. Chem. 53, 2840–43 (1988).

    Google Scholar 

  35. P.v.R. Schleyer, E. Osawa, and M. Drew. Nonacyclo[11.7.1.12,18.03,16.04, 13.05,10,06,14.07,11,015,20]docosane, a bastard tetramantane. J. Am. Chem. Soc. 90, 5034–36 (1968).

    Google Scholar 

  36. M.A. McKervey. Synthetic Approaches to large diamondoid hydrocarbons. Tetrahedron 36, 971–92 (1980).

    Google Scholar 

  37. W. Burns, T.R.B. Mitchell, and M.A. McKervey. Gas-phase Reactions on Platinum. Synthesis and Crystal Structure of anti-Tetramantane, A Large Diamondoid Fragment. J. Chem. Soc., Chem. Commun., 893 (1976).

    Google Scholar 

  38. E. Ozawa, A. Furusaki, N. Hashiba, T. Matsumoto, V. Sing, Y. Tahara, E. Wiskott, M. Farcasiu, T. lizuka, N. Tanaka, T. Kan, and P.v.R. Schleyer. Thermodynamic Rearrangements of larger polycyclic hydrocarbons. J. Org. Chem. 45, 2985–95 (1980).

    Google Scholar 

  39. S. Landa. The isolation of several hydrocarbons from Hodonin crude oil, especially adamantane. Chem. Listy 27, 415 (1933).

    Google Scholar 

  40. S. Hala and S. Landa. Isolation of tetracyclo[6.3.1.02,6.05,10]dodecane and pentacyclo[7.3.1.14,12.02,7.06,11]tetradecane (diamantane) from petroleum. Angew. Chem. Internat. Edit 5, 1045 (1966).

    Google Scholar 

  41. J.E. Dahl et al. Diamondoid hydrocarbons as indicators of natural oil cracking. Nature 399, 54–7 (1999)

    Google Scholar 

  42. P.v.R. Schleyer. Cage Hydrocarbons, G.A. Olah ed. NY. USA: Wiley, pp. 1–38, 1990.

    Google Scholar 

  43. R. Lin and Z. Wilk. Natural occurrence of tetramantane (C22H28), pentamantane (C26H32) and hexamantane (C30H36) in a deep petroleum reservoir. Fuel 74, 1512–20 (1995).

    Google Scholar 

  44. J.E. Butler and R.L. Woodin. Thin film diamond growth mechanisms. In Thin film Diamond, A. Lettington, J.W. Steeds, eds., London: Chapman & Hall, pp. 15–30 (1994).

    Google Scholar 

  45. P.R. Buerki and S. Leutwyler. CO2-laser-induced vapor-phase synthesis of HN-diamond nanoparticles at 0.6–2 BAR. Nanostructured Materials 4, 577–82 (1994).

    Google Scholar 

  46. P.R. Buerki and S. Leutwyler. Homogeneous nucleation of diamond powder by CO2-laser-driven gas-phase reactions. J. Appl. Phys. 69(6), 3739–44 (1991).

    Google Scholar 

  47. A.S. Barnard, S.P. Russo, I.K. Snook. Ab initio modeling of the stability of nanocrystalline diamond morphologies. Philosoph. Mag. Lett. 83, 39–45 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Carlson, R., Dahl, J., Liu, S., Olmstead, M., Buerki, P., Gat, R. (2005). Diamond Molecules Found in Petroleum. In: Gruen, D.M., Shenderova, O.A., Vul’, A.Y. (eds) Synthesis, Properties and Applications of Ultrananocrystalline Diamond. NATO Science Series, vol 192. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3322-2_6

Download citation

Publish with us

Policies and ethics