Skip to main content

Quantum Chemical Studies of Growth Mechanisms of Ultrananocrystalline Diamond

  • Conference paper
Book cover Synthesis, Properties and Applications of Ultrananocrystalline Diamond

Part of the book series: NATO Science Series ((NAII,volume 192))

Abstract

Computational studies of growth mechanisms on diamond surfaces based on C2 precursor have been reviewed. The investigations have postulated reaction mechanisms with diamond growth occurring by insertion of C2 into the C-H bonds of the hydrogen-terminated diamond surface or into π- bonded carbon dimers on dehydrogenated diamond surfaces. Reaction barriers for both growth and renucleation at (011) and (100) diamond surfaces had been calculated using quantum chemistry approaches. Preliminary results on growth mechanism involving CN precursors are also reported.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D.M. Gruen. Nanocrystalline diamond films. Annu. Rev. Mater. Sci. 29, 211–59 (1999).

    Article  Google Scholar 

  2. D.M. Gruen, S. Liu, A.R. Krauss, J. Luo, and X. Pan. Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions. Appl. Phys. Lett. 64, 1502–04 (1994).

    Google Scholar 

  3. P. Zapol, L.A. Curtiss, H. Tamura, and M.S. Gordon. Theoretical Studies of Growth Reactions on Diamond Surfaces. In: Computational Materials Chemistry, in press

    Google Scholar 

  4. W.J Hehre, L. Radom, J.A. Pople, and P.v.R. Schleyer. Ab Initio Molecular Orbital Theory. New York: Wiley, 1987.

    Google Scholar 

  5. M. J. Frisch et al. Gaussian 98. Pittsburgh: Gaussian, Inc., 1998.

    Google Scholar 

  6. W. Kohn, A. D. Becke, and R. G. Parr. Density functional theory of electronic structure. J. Phys. Chem. 100, 12974–80 (1996).

    Google Scholar 

  7. Th. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo, and S. Suhai. Atomistic simulations of complex materials: ground-state and excited-state properties. J. Phys. Cond. Matter 14, 3015–47 (2002).

    Google Scholar 

  8. L.A. Curtiss, K. Raghavachari, P.C. Redfem, V. Rassolov, and J.A. Pople. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem. Phys. 109, 7764–76 (1998).

    Google Scholar 

  9. P.C. Redfern, D.A. Homer, L.A. Curtiss, and D.M. Gruen. Theoretical studies of growth of diamond (110) from dicarbon. J. Phys. Chem. 100, 11654–63 (1996).

    Google Scholar 

  10. M. Sternberg, M. Kaukonen, R.M. Nieminen, and Th. Frauenheim. Growth of (110) diamond using pure dicarbon. Phys. Rev. B 63, 165414 (2000).

    Google Scholar 

  11. D.M. Gruen, P.C. Redfern, D.A. Homer, P. Zapol, and L. Curtiss. Theoretical studies on nanocrystalline diamond: nucleation by dicarbon and electronic structure of planar defects. J. Phys. Chem. B 103, 5459–67 (1999).

    Google Scholar 

  12. M. Sternberg, P. Zapol, and L. Curtiss. Carbon dimers on the diamond (100) surface: Growth and nucleation. Phys. Rev. B 68, 205330 (2003).

    Google Scholar 

  13. M. Sternberg, P. Zapol, T. Frauenheim, J. Carlisle, D. M. Gruen, and L. A. Curtiss, Density functional based tight binding study of C2 and CN Deposition on (100) diamond surface. Mat. Res. Soc. Symp. Proc. 675, W12.11.1 (2001).

    Google Scholar 

  14. P. Zapol and M. Sternberg, to be published.

    Google Scholar 

  15. D. M. Gruen, S. Liu, A. R. Krauss, and X. Pan. Buckyball microwave plasmas: Fragmentation and diamond-film growth. J. Appl. Phys. 75, 1758–63 (1994).

    Google Scholar 

  16. D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. Gruen. Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma. J Appl. Phys. 83, 540–43 (1998).

    Google Scholar 

  17. D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss. Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas. J. Appl. Phys. 84, 1981–89 (1998).

    Google Scholar 

  18. S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P, Zapol. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films Appl. Phys. Lett. 79, 1441–43 (2001).

    Article  Google Scholar 

  19. M. Sternberg, D. A. Homer, P. C. Redfern, P. Zapol, L. A. Curtiss, to be published.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 U.S. Government

About this paper

Cite this paper

Curtiss, L., Zapoll, P., Sternberg, M., Redfernm, P., Horner, D., Gruen, D. (2005). Quantum Chemical Studies of Growth Mechanisms of Ultrananocrystalline Diamond. In: Gruen, D.M., Shenderova, O.A., Vul’, A.Y. (eds) Synthesis, Properties and Applications of Ultrananocrystalline Diamond. NATO Science Series, vol 192. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3322-2_4

Download citation

Publish with us

Policies and ethics