Quantum Chemical Studies of Growth Mechanisms of Ultrananocrystalline Diamond

  • L.A. Curtiss
  • P. Zapoll
  • M. Sternberg
  • P.C. Redfernm
  • D.A. Horner
  • D.M. Gruen
Part of the NATO Science Series book series (NAII, volume 192)


Computational studies of growth mechanisms on diamond surfaces based on C2 precursor have been reviewed. The investigations have postulated reaction mechanisms with diamond growth occurring by insertion of C2 into the C-H bonds of the hydrogen-terminated diamond surface or into π- bonded carbon dimers on dehydrogenated diamond surfaces. Reaction barriers for both growth and renucleation at (011) and (100) diamond surfaces had been calculated using quantum chemistry approaches. Preliminary results on growth mechanism involving CN precursors are also reported.


diamond surface reactions growth mechanisms quantum chemical calculations CN precursor 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.M. Gruen. Nanocrystalline diamond films. Annu. Rev. Mater. Sci. 29, 211–59 (1999).CrossRefGoogle Scholar
  2. 2.
    D.M. Gruen, S. Liu, A.R. Krauss, J. Luo, and X. Pan. Fullerenes as precursors for diamond film growth without hydrogen or oxygen additions. Appl. Phys. Lett. 64, 1502–04 (1994).Google Scholar
  3. 3.
    P. Zapol, L.A. Curtiss, H. Tamura, and M.S. Gordon. Theoretical Studies of Growth Reactions on Diamond Surfaces. In: Computational Materials Chemistry, in pressGoogle Scholar
  4. 4.
    W.J Hehre, L. Radom, J.A. Pople, and P.v.R. Schleyer. Ab Initio Molecular Orbital Theory. New York: Wiley, 1987.Google Scholar
  5. 5.
    M. J. Frisch et al. Gaussian 98. Pittsburgh: Gaussian, Inc., 1998.Google Scholar
  6. 6.
    W. Kohn, A. D. Becke, and R. G. Parr. Density functional theory of electronic structure. J. Phys. Chem. 100, 12974–80 (1996).Google Scholar
  7. 7.
    Th. Frauenheim, G. Seifert, M. Elstner, T. Niehaus, C. Kohler, M. Amkreutz, M. Sternberg, Z. Hajnal, A. Di Carlo, and S. Suhai. Atomistic simulations of complex materials: ground-state and excited-state properties. J. Phys. Cond. Matter 14, 3015–47 (2002).Google Scholar
  8. 8.
    L.A. Curtiss, K. Raghavachari, P.C. Redfem, V. Rassolov, and J.A. Pople. Gaussian-3 (G3) theory for molecules containing first and second-row atoms. J Chem. Phys. 109, 7764–76 (1998).Google Scholar
  9. 9.
    P.C. Redfern, D.A. Homer, L.A. Curtiss, and D.M. Gruen. Theoretical studies of growth of diamond (110) from dicarbon. J. Phys. Chem. 100, 11654–63 (1996).Google Scholar
  10. 10.
    M. Sternberg, M. Kaukonen, R.M. Nieminen, and Th. Frauenheim. Growth of (110) diamond using pure dicarbon. Phys. Rev. B 63, 165414 (2000).Google Scholar
  11. 11.
    D.M. Gruen, P.C. Redfern, D.A. Homer, P. Zapol, and L. Curtiss. Theoretical studies on nanocrystalline diamond: nucleation by dicarbon and electronic structure of planar defects. J. Phys. Chem. B 103, 5459–67 (1999).Google Scholar
  12. 12.
    M. Sternberg, P. Zapol, and L. Curtiss. Carbon dimers on the diamond (100) surface: Growth and nucleation. Phys. Rev. B 68, 205330 (2003).Google Scholar
  13. 13.
    M. Sternberg, P. Zapol, T. Frauenheim, J. Carlisle, D. M. Gruen, and L. A. Curtiss, Density functional based tight binding study of C2 and CN Deposition on (100) diamond surface. Mat. Res. Soc. Symp. Proc. 675, W12.11.1 (2001).Google Scholar
  14. 14.
    P. Zapol and M. Sternberg, to be published.Google Scholar
  15. 15.
    D. M. Gruen, S. Liu, A. R. Krauss, and X. Pan. Buckyball microwave plasmas: Fragmentation and diamond-film growth. J. Appl. Phys. 75, 1758–63 (1994).Google Scholar
  16. 16.
    D. Zhou, T. G. McCauley, L. C. Qin, A. R. Krauss, and D. Gruen. Synthesis of nanocrystalline diamond thin films from an Ar-CH4 microwave plasma. J Appl. Phys. 83, 540–43 (1998).Google Scholar
  17. 17.
    D. Zhou, D. M. Gruen, L. C. Qin, T. G. McCauley, and A. R. Krauss. Control of diamond film microstructure by Ar additions to CH4/H2 microwave plasmas. J. Appl. Phys. 84, 1981–89 (1998).Google Scholar
  18. 18.
    S. Bhattacharyya, O. Auciello, J. Birrell, J. A. Carlisle, L. A. Curtiss, A. N. Goyette, D. M. Gruen, A. R. Krauss, J. Schlueter, A. Sumant, and P, Zapol. Synthesis and characterization of highly-conducting nitrogen-doped ultrananocrystalline diamond films Appl. Phys. Lett. 79, 1441–43 (2001).CrossRefGoogle Scholar
  19. 19.
    M. Sternberg, D. A. Homer, P. C. Redfern, P. Zapol, L. A. Curtiss, to be published.Google Scholar

Copyright information

© U.S. Government 2005

Authors and Affiliations

  • L.A. Curtiss
    • 1
  • P. Zapoll
    • 1
  • M. Sternberg
    • 1
  • P.C. Redfernm
    • 1
  • D.A. Horner
    • 1
    • 2
  • D.M. Gruen
    • 1
  1. 1.Argonne National LaboratoryArgonneUSA
  2. 2.North Central CollegeNapervilleUSA

Personalised recommendations