Advertisement

Thermoelectric Effect in Field Electron Emission from Nanocarbon

  • A.Ya. Vul’
  • E.D. Eidelman
  • A.T. Dideikin
Part of the NATO Science Series book series (NAII, volume 192)

Abstract

We suggest a model of field emission from nanocarbon materials, which accounts for the electron drag by ballistic phonons through the temperature gradient region of the emission center. The model does not require additional assumptions of a special energy structure of the emission center. The numerical calculations made within this model agree well with available experimental data.

Keywords

nanocarbon nanodiamond nanographite electron field emission thermoelectric effect drag effect ballistic phonon 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A.T. Dideykin, E.D. Eidelman, and A.Ya. Vul’. The mechanism of autoelectron emission in carbon nanostructures. Solid State Communication, 126, 494–98 (2003).Google Scholar
  2. 2.
    A.V. Eletskii. Carbon nanotubes and their emission properties. Phys. Uspekhi., 45 369–02 (2002).Google Scholar
  3. 3.
    A.R. Krauss, O. Auciella, M.Q. Ding, D.M. Gruen, Y. Huang, V.V. Zhirnov, E.I. Givargizov, A. Breskin, R. Chechen, E. Shefer, V. Konov, S. Pimenov, A. Karabutov, A. Rakhimov, and N. Suetin. Electron field emission for ultrananocrystalline diamond films. Journal of Applied Physics, 89, 2958–67 (2001).Google Scholar
  4. 4.
    P.H. Levin. Thermoelectric Phenomena Associated with Electron-Field Emission. J Appl. Phys., 33, 582–87 (1962).Google Scholar
  5. 5.
    S.T. Pursell, P. Vinsent, C. Journet, and Vu Thien Binh. Hot Nanotudes: Stable Heating of Individual Multiwall Carbon Nanotudes to 2000 K Induced by Field Emission Current. Physical Review Letters, 88, 105502 (2002).PubMedGoogle Scholar
  6. 6.
    Tables of Physical and Chemical Constnts. By G.W. Kaye, T.H. Laby. Longmans Green & Co. 1958.Google Scholar
  7. 7.
    L.E. Gurevich. Thermoelectric properties of metals. J Phys. (USSR) 9, 4–26 (1946).Google Scholar
  8. 8.
    A. Zylbersztein Interaction of electrons with thermal pulses in semiconductors. Journal de Physic, 33Suppl. C4, 85–91 (1972).Google Scholar
  9. 9.
    E.M. Livshits and L.P. Pitaevsky. Physical Kinetics. Moscow: Science, p 80, 1997.Google Scholar
  10. 10.
    J.M. Ziman. Principles of the theory of Solids. Cambridge: Univ. Press, 1964.Google Scholar
  11. 11.
    R.H. Fowler and L.W. Nordhein. Electron emission in intense electric field. Proc. R. Soc. London., Ser. A 119, 173–86 (1928).Google Scholar
  12. 12.
    K. Yuasa, A. Shimoi, I. Ohba, and C. Oshina. Modified Fowler-Nordheim field emission formulae from a nonplanar emitter model. Surface Science, 520, 18–28 (2002).Google Scholar
  13. 13.
    Z.-H. Huang, P.H. Cutler, N.M. Miskovsky, and T.E. Sullivan. Theoretical study of field emission from diamond. Appl. Phys. Lett. 65, 2562–64 (1994).Google Scholar
  14. 14.
    A.N. Obraztsov, A.P. Volkov, and I.Yu. Pavlovskii. Cold electron emission mechanism for carbon materials. Lett. Journ. Exp. Theor. Phys., 68, 50–53 (1998).Google Scholar
  15. 15.
    W. Zhu, G.P. Kochanski, and S. Jin. Low-Field Electron Emission from Undoped Nanostructured Diamond. Science, 282, 1471–73 (1998)PubMedGoogle Scholar
  16. 16.
    N. Obraztsov, A.P. Volkov, A.I. Boronin, and S.V. Koshcheev. Atomic orbitals rehybridization and field electron emission from nanostructural carbon. Journ. Exp. Theor Phys., 93, 846–53 (2001).Google Scholar
  17. 17.
    V.D. Frolov, A.V. Karabutov, S.M. Pimeniv, V.I. Konov, and V.P. Ageev. Similarity in field electron emission from nanocrystalline diamond and related materials. Diamond and Related Materials, 10, 1719–26 (2001).Google Scholar
  18. 18.
    F. Prins. The diamond-vacuum interface: I. A model of the interface between an n-type semiconductor, with negative electron affinity, and the vacuum. Semiconductor Science and Technology, 18, 125–30 (2003).Google Scholar
  19. 19.
    K.-R. Lee, K.Y. Eun, S. Lee, D.-R. Jeon. Field emission behavior of nitrogen incorporated diamond-like carbon film. Thin Solid Films, 290–291, 171–75 (1996).Google Scholar
  20. 20.
    W.J. Zhang, Y. Wu, W.K. Wong, X.M. Meng, C.Y. Chan, I. Bello, Y. Lifshitz and S.T. Lee. Structuring nanodiamond cone arrays for improved field emission. Applied Physics Letters, 83, 3365–67 (2003).Google Scholar
  21. 21.
    R. Wäcther, A. Cordery, S. Proffit, and J.S. Foord. Influence of film deposition parameters on the field emission properties of diamond-like carbon films. Diamond and Related Materials, 7, 687–91 (1998).Google Scholar
  22. 22.
    M. Oliver, Küttel, O. Gröning, Ch. Emmenegger, L. Nilsson, E. Mailllard, L. Diederich, L. Schlapbach. Field emission from diamond, diamond-like and nanostructured carbon films. Carbon, 37, 745–52 (1999).Google Scholar
  23. 23.
    V. Ralchenko, A. Karabutov, I. Vlasov, V. Frolov, V. Konov, S. Gordeev, S. Zhukov, and A. Dementjev. Diamond-carbon nanocomposities: applications for diamond film deposition and field electron emission. Diamond and Materials, 8, 1496–01 (1999).Google Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • A.Ya. Vul’
    • 1
  • E.D. Eidelman
    • 1
  • A.T. Dideikin
    • 1
  1. 1.Ioffe Physico-Technical InstituteSt PetersburgRussia

Personalised recommendations