Skip to main content

Part of the book series: NATO Science Series ((NAII,volume 192))

Abstract

Recent advances in the fabrication and characterization of semiconductor and metallic nanowires are proving very successful in meeting the high expectations of nanotechnologists. Although the nanoscience surrounding sp3 bonded carbon nanotubes has continued to flourish over recent years the successful synthesis of the sp3 analogue, diamond nanowires, has been limited. This prompts questions as to whether diamond nanowires are fundamentally unstable. By applying knowledge obtained from examining the structural transformations in nanodiamond, a framework for analyzing the structure and stability of diamond nanowires may be established. One possible framework will be discussed here, supported by results of ab initio density functional theory calculations used to study the structural relaxation of nanodiamond and diamond nanowires. The results show that the structural stability and electronic properties of diamond nanowires are dependent on the surface morphology, crystallographic direction of the principal axis, and the degree of surface hydrogenation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. O.A. Shenderova, V.V. Zhimov, and D.W. Brenner. Carbon Nanostructures. Critical Reviews in Solid State and Material Sciences 27, 227 (2002).

    Google Scholar 

  2. Y. Gogotsi Perspective, Designing Carbon Crystals for Nanotechnology Applications. Crystal Growth & Design 1, 179 (2001).

    Google Scholar 

  3. N.R. Greiner, D.S. Phillips, J.D. Johnson, and F. Volk. Diamonds in detonation soot. Nature 333, 440 (1998).

    Google Scholar 

  4. D.M. Gruen. Nanocrystalline diamond films. Annual Reviews of Material Science 29, 211 (1999).

    Google Scholar 

  5. T. Sharda and T. Soga. A different regime of nanostructured diamond film growth. Journal of Nanoscience and Nanotechnology 3, 521 (2003).

    PubMed  Google Scholar 

  6. T. Wang, H.W. Xin, Z.M. Zhang, Y.B. Dai, H.S. Shen. The fabrication of nanocrystalline diamond films using hot filament CVD. Diamond and Related Materials 13, 6 (2004).

    Article  Google Scholar 

  7. V.L. Kuznetsov, A.L. Chuvilin, Y.V. Butenko, I.Y. Mal’kov, and V.M. Titov. Onion-Like carbon From ultra-disperse diamond. Chemical Physics Letters 222, 343 (1994).

    Google Scholar 

  8. V.L. Kuznetsov, I.L. Zilberberg, Y.V. Butenko, A.L. Chuvilin, and B. Seagall, Theoretical study of the formation of closed curved graphite-like structures during annealing of diamond surface. Journal of Applied Physics 86, 863 (1999).

    Google Scholar 

  9. F. Banhart and P.M. Ajayan. Carbon onions as nanoscopic pressure cells for diamond formation. Nature 382, 433 (1996).

    Google Scholar 

  10. M. Zaiser and F. Banhart. Radiation-induced transformation of graphite to diamond. Physical Review Letters 79, 3680 (1997).

    Google Scholar 

  11. F. Banhart. The transformation of graphitic onions to diamond under electron irradiation. Journal of Applied Physics 81, 3440 (1997).

    Google Scholar 

  12. E.-S. Baik, Y.-J. Baik, and D. Jeon. Aligned diamond nanowhiskers. Journal of Materials Research 15, 923 (2000).

    Google Scholar 

  13. H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T.N. Rao, and A. Fujishima. Synthesis of well-aligned diamond nanocylinders. Advanced Materials 13, 247 (2001).

    Google Scholar 

  14. Y. Ando, Y. Nishibayaski, and A. Sawabe. ‘Nano-rods’ of single crystalline diamond. Diamond and Related Materials 13, 366 (2004).

    Google Scholar 

  15. A.S. Barnard, S.P. Russo, and I.K. Snook. Ab initio modelling of diamond nanowire structures. Nano Letters 3, 1323 (2003).

    Google Scholar 

  16. A.S. Barnard, S.P. Russo, and I.K. Snook. Surface Structure of Cubic Diamond Nanowires. Surface Science 538, 204 (2003).

    Google Scholar 

  17. A.S. Barnard, S.P. Russo, and I.K. Snook. From nanodiamond to diamond nanowires. Structural properties affected by dimension. Philosophical Magazine 84, 899 (2004).

    Google Scholar 

  18. A.S. Barnard, S.P. Russo, and I.K. Snook. Bucky-wires and the instability of diamond (111) surfaces in one-dimension. Journal of Nanoscience and Nanotechnology 4, 151 (2004).

    PubMed  Google Scholar 

  19. J. Perdew and Y. Wang. Accurate and simple analytic representation of the electrongas correlation-energy. Physical Review B 45, 13244 (1992).

    Google Scholar 

  20. G. Kresse and J. Hafner. Ab initio molecular dynamics for liquid metals. Physical Review B 47, RC558 (1993).

    Google Scholar 

  21. G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Physical Review B 54, 11169 (1996).

    Google Scholar 

  22. G. Kresse and J. Furthmüller. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set Computational Materials Science 6, 15 (1996).

    Google Scholar 

  23. D.M. Wood and A. Zunger. A new method for diagonalising large matrices. Journal of Physics A 18, 1343 (1985).

    Google Scholar 

  24. D. Vanderbilt. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B 41, 7892 (1990).

    Google Scholar 

  25. G. Kresse and J. Hafner. Norm-conserving and ultrasoft pseudopotentials for first-row and transition-elements. Journal of Physics Condensed Matter 6, 8245 (1994).

    Google Scholar 

  26. N.W. Winter and F.H. Ree Kinetics and thermodynamic behavior of carbon clusters under high pressure and high temperature. Journal of Computer-Aided Materials Design 5, 279 (1998).

    Google Scholar 

  27. F. Fugaciu, H. Hermann, and G. Seifert. Concentric-shell fullerenes and diamond particles, A molecular-dynamics study. Physical Review B 60, 10711 (1999).

    Google Scholar 

  28. J.Y. Raty, G. Galli, C. Bostedt, T.W. Buuren, and L.J. Terminello. Quantum confinement and fullerenelike surface reconstructions in nanodiamonds. Physical Review Letters 90, 37402 (2003).

    Google Scholar 

  29. A.S. Barnard, S.P. Russo, and I.K. Snook. Ab initio modelling of stability of nanodiamond morphologies. Philosophical Magazine Letters 83,39 (2003).

    Google Scholar 

  30. A.S. Barnard, S.P. Russo, and I.K. Snook. Structural relaxation and relative stability of nanodiamond morphologies. Diamond and Related Materials 12, 1867 (2003).

    Google Scholar 

  31. A.S. Barnard, S.P. Russo, and I.K. Snook. First principles investigations of diamond ultrananocrystals. International Journal of Modern Physics B 17, 3865 (2003).

    Google Scholar 

  32. S.P. Russo, A.S. Barnard, and I.K. Snook. Hydrogenation of nanodiamond surfaces, Structure and effects on crystalline stability. Surface Review and Letters 10,233 (2003).

    Google Scholar 

  33. A.S. Barnard, S.P. Russo, and I.K. Snook. Coexistence of bucky diamond with the nanodiamond and fullerene carbon phases. Physical Review B 68, 73406 (2003).

    Google Scholar 

  34. J. Furthmüller, J. Hafner, and G. Kresse. Dimer reconstruction and electronic surface states on clean and hydrogenated diamond (100) surfaces. Physical Review B 53, 7334 (1996).

    Google Scholar 

  35. Barnard A.S., N.A. Marks, S.P. Russo, and I.K. Snook. Hydrogen stabilization of 111 nanodiamond. Materials Research Society Symposium Proceedings 740, 69 (2003).

    Google Scholar 

  36. J.Y. Raty and G. Galli. Ultradispersity of diamond at the nanoscale. Nature Materials 2, 792 (2003).

    PubMed  Google Scholar 

  37. Y. K. Chang, H.H. Hsieh, W.F. Pong, M.-H. Tsai, F.Z. Chien, P.K. Tseng, L.C. Chen, T.Y. Wang, K.H. Chen, D.M. Bhusari, J.R. Yang, and S.T. Lin. Quantum confinement effect in diamond nanocrystals studied by X-ray-absorption spectroscopy. Physical Review Letters 82, 5377 (1999).

    Google Scholar 

  38. A.S. Barnard, S.P. Russo, and I.K. Snook. Electronic band gaps of diamond nanowires. Physical Review B 68, 235407 (2003).

    Google Scholar 

  39. G. Kern and J. Hafner. Ab initio calculations of the atomic and electronic structure of clean and hydrogenated diamond (110) surfaces. Physical Review B 56, 4203 (1997).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 U.S. Government

About this paper

Cite this paper

Barnard, A. (2005). From Nanodiamond to Nanowires. In: Gruen, D.M., Shenderova, O.A., Vul’, A.Y. (eds) Synthesis, Properties and Applications of Ultrananocrystalline Diamond. NATO Science Series, vol 192. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3322-2_3

Download citation

Publish with us

Policies and ethics