Carbon Family at the Nanoscale

  • O.A. Shenderova
  • Z. Hu
  • D. Brenner
Part of the NATO Science Series book series (NAII, volume 192)


An overview of the relative stability of various carbon structures with characteristic sizes in the nanoscale region is presented with major emphasis on ultrananocrystalline diamond (UNCD), which has very diverse structures at the nanoscale. Heats of formation of nanodiamond particles of different morphologies are reported.


nanocarbon ultrananocrystalline diamond heat of formation cohesive energy hydrogenated carbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D.M. Gruen. Nanocrystalline diamond films. Annual Rev. Mater. Sci. 29, 211–59 (1999).CrossRefGoogle Scholar
  2. 2.
    V.Y. Dolmatov. Detonation synthesis ultradispersed diamond: properties and applications. Russian Chem. Reviews 70, 607–26 (2001).CrossRefGoogle Scholar
  3. 3.
    O. Shenderova, V. Zhirnov, and D. Brenner. Carbon Materials and Nanostructures. Critical Reviews in Solid State and Materials Sciences 27(3/4), 227–356 (2002).Google Scholar
  4. 4.
    V.Yu. Dolmatov. Ultradisperse diamonds of detonation synthesis: production, properties and applications. St. Petersburg: State Politechnical University, 2003.Google Scholar
  5. 5.
    A.L. Vereschagin. Detonation Nanodiamonds. Barnaul, Russian Federation: Altai State Technical University, 2001, (in Russian).Google Scholar
  6. 6.
    V.V. Danilenko. Synthesis and Sintering of Diamond by Detonation. Energoatomizdat, 2003, (in Russian).Google Scholar
  7. 7.
    Detonation Nanodiamonds and Related Materials, Bibliography Index, First Issue, Eds. A. Vul, V. Dolmatov and O. Shenderova, “Fizintel”, St.Petersburg, Russia, 2003.Google Scholar
  8. 8.
    M. Inagaki. New carbons. Elsevier, 2000.Google Scholar
  9. 9.
    Carbyne and Carbynoid Structures. Eds. R.B. Heimann, S.E. Evsyukov and L. Kavan, Kluwer Academic Pub., 1999.Google Scholar
  10. 10.
    E. Osawa, M. Yoshida, and M. Fujita. Shape and fantasy of Fullerenes. MRS Bull. 19(11), 33 (1994).Google Scholar
  11. 11.
    R.B. Heinmann, S.E. Evsyukov, and Y. Koga. Carbon allotropes: a suggested classification scheme based on valence orbital hybridization. Carbon 35, 1654–58 (1997).Google Scholar
  12. 12.
    J.E. Dahl, S.G. Liu, and R.M.K. Carlson. Isolation and structure of higher diamondoids, nanometer-sized diamond molecules. Science 299(5603), 96–9 (2003).CrossRefPubMedGoogle Scholar
  13. 13.
    J.-Y. Raty, G. Galli, C. Bostedt, T.W. van Buuren, and L.J. Terminello. Quantum confinement and fullerenelike surface reconstructions in nanodiamonds Phys. Rev. Lett. 90 (2003).Google Scholar
  14. 14.
    Y. Gogotsi Graphite polyhedral crystals. Science 290, 317–20 (2000).PubMedGoogle Scholar
  15. 15.
    H.W. Zhu, C.L. Xu, D.H. Wu, B.Q. Wei, R. Vajtai, and P.M. Ajayan. Direct synthesis of long single-walled carbon nanotube strands. Science 296, 884–86 (2002).PubMedGoogle Scholar
  16. 16.
    E.S. Baik, et al. Fabrication of diamond nanowhiskers. Thin Solid Films 377, 295 (2000).Google Scholar
  17. 17.
    T. Tyler, V. Zhirnov, A. Kvit, D. Kang, and J. Hren. Electron emission from diamond nanoparticles on metal tips. Applied Physics Letters 82, 2904–06 (2003).Google Scholar
  18. 18.
    D.W. Brenner, O.A. Shenderova, J.A. Harrison, S.J. Stuart, B. Ni, and S.B. Sinnott. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons J. Phys.: Solid State 14, 783–802 (2002).Google Scholar
  19. 19.
    P. Badziag, W.S Verwoerd Nanometre-sized diamond is more stable than graphite. Nature 343, 244–45 (1990).Google Scholar
  20. 20.
    A. Barnard, S. Russo, and S. Snook. Ab initio modelling of the stability of nanocrystalline diamond morphologies. Phil. Mag. Lett. 83, 39 (2003).Google Scholar
  21. 21.
    A. Barnard, S. Russo, and S. Snook. Coexistence of bucky diamond with nanodiamond and fullerene carbon phases. Phys. Rev. B 68, 073406 (2003).Google Scholar
  22. 22.
    N. Park, K. Lee, S.W. Han et al. Energetics of large carbon clusters: Crossover from fullerenes to nanotubes. Phys.Rev.B 65, 121405 (2002).Google Scholar
  23. 23.
    D. Tomanek and M.A. Schluter. Growth regimes of carbon clusters. Phys.Rev.Lett. 67, 2331 (1991).PubMedGoogle Scholar

Copyright information

© Springer 2005

Authors and Affiliations

  • O.A. Shenderova
    • 1
  • Z. Hu
    • 2
  • D. Brenner
    • 2
  1. 1.International Technology CenterUSA
  2. 2.North Carolina State UniversityRaleighUSA

Personalised recommendations