Skip to main content

Off-Lattice KMC Simulations of Stranski-Krastanov-Like Growth

  • Conference paper
Quantum Dots: Fundamentals, Applications, and Frontiers

Part of the book series: NATO Science Series ((NAII,volume 190))

Abstract

We investigate strained heteroepitaxial crystal growth in the framework of a simplifying (1+1)-dimensional model by use of off-lattice kinetic Monte Carlo simulations. Our modified Lennard—Jones system displays the so-called Stranski—Krastanov growth mode: initial pseudomorphic growth ends by the sudden appearance of strain induced multilayer islands upon a persisting wetting layer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. A. Pimpinelli and J. Villain, Physics of Crystal Growth, Cambridge University Press (1998).

    Google Scholar 

  2. P. Politi, G. Grenet, A. Marty, A. Ponchet, and J. Villain. Instabilities in crystal growth by atomic or molecular beams. Phys. Rep. 324: 271–404, 2000.

    Article  Google Scholar 

  3. W. K. Liu and M. B. Santos (eds.), Thin Films: Heteroepitaxial systems, World Scientific (1999).

    Google Scholar 

  4. C. Heyn. Critical coverage for strain-induced formation of InAs quantum dots, Phys. Rev. B 64: art. no. 165306, 2001.

    Google Scholar 

  5. A. G. Cullis, D. J. Norris, T. Walther, M. A. Migliorato, and M. Hopkinson. Stranski—Krastanov transition and epitaxial island growth. Phys. Rev. B 66: art. no. 081305(R), 2002.

    Google Scholar 

  6. L. Chkoda, M. Schneider, V. Shklover, L. Kilian, M. Sokolowski, C. Heske, and E. Umbach. Temperature-dependent morphology and structure of ordered 3,4,9,10-perylene-tetracarboxylicacid-dianhydride (PCTDA) thin films on Ag(111). Chem. Phys. Lett. 371: 548–552, 2003.

    Article  Google Scholar 

  7. A. C. Schindler, Theoretical aspects of growth in one and two dimensional strained crystal surfaces, dissertation, Duisburg (1999).

    Google Scholar 

  8. A. C. Schindler, D. D. Vvedensky, M. F. Gyure, G. D. Simms, R. E. Caflisch and C. Connell. Atomistic and continuum elastic effects in heteroepitaxial systems, in: Atomistic Aspects of Epitaxial Growth, M. Kotrla, N. I. Papanicolaou, D. D. Vvedensky, L. T. Wille (eds.), Kluwer (2002), pp. 337–353.

    Google Scholar 

  9. H. Spjut and D. A. Faux. Computer simulation of strain-induced diffusion enhancement of Si adatoms on the Si(001) surface. Surf. Sci. 306: 233–239, 1994.

    Article  Google Scholar 

  10. J. Kew, M. R. Wilby, and D. D. Vvedensky. Continuous-space Monte Carlo simulations of epitaxial growth. J. Crystal Growth 127: 508–512, 1993.

    Article  Google Scholar 

  11. F. Much, M. Ahr, M. Biehl, and W. Kinzel. Kinetic Monte Carlo simulations of dislocations in heteroepitaxial growth. Europhys. Lett. 56: 791–796, 2001.

    Article  Google Scholar 

  12. M. Biehl and F. Much. Simulation of wetting-layer and island formation in heteroepitaxial growth. Europhys. Lett. 63: 14–20, 2003.

    Article  Google Scholar 

  13. M. E. J. Newman and G. T. Barkema, Monte Carlo Methods in Statistical Physics, Oxford University Press (1999).

    Google Scholar 

  14. A. Madhukar. Far from equilibrium vapor phase growth of lattice matched III–V compound semiconductor interfaces: some basic concepts and Monte-Carlo computer simulations. Surf. Sci. 132: 344–374, 1983.

    Article  Google Scholar 

  15. S. V. Ghaisas and A. Madhukar, Role of surface molecular reactions in influencing the growth mechanism and the nature of nonequilibrium surfaces: a Monte Carlo study of molecular-beam epitaxy, Phys. Rev. Lett. 56 (1986) 1066.

    Article  PubMed  Google Scholar 

  16. K. E. Khor and S. Das Sarma. Quantum dot self-assembly in growth of strained-layer thin films: a kinetic Monte Carlo study. Phys. Rev. B 62: 16657–16664, 2000.

    Article  Google Scholar 

  17. M. Meixner, E. Schöll, V. A. Shchukin, and D. Bimberg. Self-assembled quantum dots: crossover from kinetically controlled to thermodynamically limited growth Phys. Rev. Lett. 87: art. no. 236101, 2001.

    Google Scholar 

  18. F. Jensen, Introduction to Computational Chemistry, Wiley (1999).

    Google Scholar 

  19. L. Dong, J. Schnitker, R. W. Smith, D. J. Sroloviy. Stress relaxation and misfit dislocation nucleation in the growth of misfitting films: A molecular dynamics simulation. J. Appl. Phys. 83: 217–227, 1997.

    Article  Google Scholar 

  20. A. F. Voter, F. Montalenti, and T. C. Germann. Extending the time scale in atomistic simulations of materials. Ann. Rev. Mater. Res. 32: 321–346, 2002.

    Article  Google Scholar 

  21. M. Schroeder and D. E. Wolf. Diffusion on strained surfaces. Surf. Sci. 375: 129–140, 1997.

    Article  Google Scholar 

  22. V. Cherepanov and B. Voigtländer. Influence of strain on diffusion at Ge(111) surfaces. Appl. Phys. Lett. 81: 4745–4747, 2002.

    Article  Google Scholar 

  23. V. Cherepanov and B. Voigtländer. Influence of material, surface reconstruction, and strain on diffusion at the Ge(111) surface. Phys. Rev. B 69: art. no. 125331, 2004

    Google Scholar 

  24. D. Leonard, K. Pond, and P. M. Petroff. Critical layer thickness for self-assembled InAs islands on GaAs. Phys. Rev. B 50: 11687–11692, 1994.

    Article  Google Scholar 

  25. J. Johansson and W. Seifert. Kinetics of self-assembled island formation: Part I: Island density. J. Crystal Growth 234: 132–138, 2002; Part II: Island size, 234: 139–144, 2002.

    Article  Google Scholar 

  26. mpeg movies and other illustrations are available from the web pages http://www.physik.uni-wuerzburg.de/~biehl {∼much}.

    Google Scholar 

  27. J. Tersoff. New empirical approach for the structure and energy of covalent systems. Phys. Rev. B 37: 6991–7000, 1988.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Biehl, M., Much, F. (2005). Off-Lattice KMC Simulations of Stranski-Krastanov-Like Growth. In: Joyce, B.A., Kelires, P.C., Naumovets, A.G., Vvedensky, D.D. (eds) Quantum Dots: Fundamentals, Applications, and Frontiers. NATO Science Series, vol 190. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3315-X_6

Download citation

Publish with us

Policies and ethics