Skip to main content

First-Principles Study of InAs/GaAs(001) Heteroepitaxy

  • Conference paper
Quantum Dots: Fundamentals, Applications, and Frontiers

Part of the book series: NATO Science Series ((NAII,volume 190))

Abstract

Density-functional theory calculations are employed to obtain important information about the morphology of III–V semiconductor surfaces and kinetics of epitaxial growth. In this way, insight into the microscopic processes governing quantum dot formation in InAs/GaAs(001) heteroepitaxy is gained. First, we investigate theoretically the atomic structure and thermodynamics of the wetting layer formed by InAs deposition on GaAs(001), including the effect of strain in our discussion. Secondly, we present results about In adatom diffusion both on the wetting layer and on the c(4 × 4)-reconstructed GaAs(001) surface. In the latter case, we demonstrate the importance of mechanical stress for the height of surface diffusion barriers. Implications for the growth of InAs quantum dots on GaAs(001) are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Bimberg, M. Grundmann, and N. N. Ledentsov. Quantum dot heterostructures (Wiley, 1998).

    Google Scholar 

  2. M. Kotrla, N. Papanicolaou, D. D. Vvedensky, and L. T. Wille, editors. Atomistic Aspects of Epitaxial Growth (Kluwer, Dordrecht, 2002).

    Google Scholar 

  3. I. N. Stranski and L. Krastanov. Zur Theorie der orientierten Ausscheidung von Ionenkristallen aufeinander. Sitzungsber. Akad. Wiss. Wien, Math.-naturwiss. Kl. IIb 146, 797–810, 1938.

    Google Scholar 

  4. M. Sugawara, editor. Self-assembled InGaAs/GaAs quantum dots (Academic, New York, 1999).

    Google Scholar 

  5. B. A. Joyce and D. D. Vvedensky. Mechanisms and anomalies in the formation of InAs-GaAs(001) quantum dot structures, in Atomistic Aspects of Epitaxial Growth, edited by M. Kotrla and N. Papanicolaou and D. Vvedensky and L. Wille (Kluwer, Dordrecht, 2002), pp. 301–325.

    Google Scholar 

  6. T. R. Ramachandran, R. Heitz, P. Chen, and A. Madhukar. Mass transfer in Stranski-Krastanov growth of InAs on GaAs. Applied Physics Letters 70: 640–642, 1997.

    Article  Google Scholar 

  7. P. Ruggerone, C. Ratsch, and M. Scheffler. Density-functional theory of epitaxial growth of metals, in Growth and Properties of Ultrathin Epitaxial Layers, edited by D. A. King and D. P. Woodruff (Elsevier, Amsterdam, 1997) pp. 490–544.

    Google Scholar 

  8. P. Kratzer, C. Morgan, and M. Scheffler. Density-functional theory studies on microscopic processes of GaAs growth. Prog. Surf. Sci. 59: 135–147, 1998.

    Article  Google Scholar 

  9. For a large number of examples the reader is referred to the following URL: http://www.fhi-berlin.mpg.de/th/paper.html.

    Google Scholar 

  10. A. Kley. Theoretische Untersuchungen zur Adatomdiffusion auf niederindizierten Oberflächen von GaAs (Wissenschaft & Technik Verlag, Berlin, 1997).

    Google Scholar 

  11. C. G. Van de Walle and J. Neugebauer. First-principles surface phase diagram for hydrogen on GaN surfaces. Phys. Rev. Lett. 88: art. no. 066103, 2002.

    Google Scholar 

  12. A. A. Stekolnikov, J. Furthmüller, and F. Bechstedt. Absolute surface energies of group-IV semiconductors: Dependence on orientation and reconstruction. Phys. Rev. B 65: art. no. 115318, 2002.

    Google Scholar 

  13. K. Reuter and M. Scheffler. First-principles thermodynamics for oxidation catalysis: Surface phase diagrams and catalytically interesting regions. Phys. Rev. Lett. 90: art. no. 046103, 2003.

    Google Scholar 

  14. F. Bechstedt. Principles of Surface Physics (Springer, Berlin, 2003).

    Google Scholar 

  15. P. Kratzer, E. Penev, and M. Scheffler. Understanding the growth mechanisms of GaAs and InGaAs thin films by employing first-principles calculations. Appl. Surf. Sci. 216: 436–446, 2003.

    Article  Google Scholar 

  16. R. J. Needs, R. M. Martin, and O. H. Nielsen. Total-energy calculations of the structural properties of the group-V element arsenic. Phys. Rev. B 33: 3778–3784 (1986).

    Article  Google Scholar 

  17. M. Bockstedte, A. Kley, J. Neugebauer, and M. Scheffler. Density-functional theory calculations for poly-atomic systems: Electronic structure, static and elastic properties and ab initio molecular dynamics. Comp. Phys. Commun. 107: 187–222, 1997; URL: www.fhi-berlin.mpg.de/th/fhimd.

    Article  Google Scholar 

  18. K. Shiraishi. A new slab model approach for electronic-structure calculation of polar semiconductor surface. J. Phys. Soc. Jpn. 59: 3455–3458, 1996.

    Google Scholar 

  19. V. P. LaBella, H. Yang, D. W. Bullock, P. M. Thibado, P. Kratzer, and M. Scheffler. Atomic structure of the GaAs(001)-(2 × 4) surface resolved using scanning tunneling microscopy and first-principles theory. Phys. Rev. Lett. 83: 2989–2992, 1999.

    Article  Google Scholar 

  20. E. S. Penev. On the theory of surface diffusion in InAs/GaAs(001) heteroepitaxy (Technische Universität Berlin, 2002); URL: www.fhi-berlin.mpg.de/th/publications/PhD-penev-2002.pdf.

    Google Scholar 

  21. J. Tersoff, M. D. Johnson, and B. G. Orr. Adatom densities on GaAs: Evidence for a near-equilibrium growth. Phys. Rev. Lett. 78: 282–285, 1997.

    Article  Google Scholar 

  22. P. Kratzer, C. G. Morgan, and M. Scheffler. Model for nucleation in GaAs homoepitaxy derived from first principles. Phys. Rev. B 59: 15246–15252, 1999.

    Article  Google Scholar 

  23. C. T. Foxon and B. A. Joyce. Interaction kinetics of As2 and Ga on {100} GaAs surface. Surf. Sci. 64: 292–304, 1977.

    Article  Google Scholar 

  24. M. Scheffler and P. Kratzer. Ab initio thermodynamics and statistical mechanics of diffusion, growth, and self-assembly of quantum dots, in Atomistic Aspects of Epitaxial Growth, edited by M. Kotrla and N. Papanicolaou and D. D. Vvedensky and L. T. Wille (Kluwer, Dordrecht, 2002) pp. 355–369.

    Google Scholar 

  25. S.-H. Lee, W. Moritz, and M. Scheffler. GaAs(001) surface under conditions of low As pressure: Evidence for a novel surface geometry. Phys. Rev. Lett. 85, 3890–3893, 2000.

    Article  PubMed  Google Scholar 

  26. C. Ratsch, W. Barvosa-Carter, F. Grosse, J. H. G. Owen, and J. J. Zinck. Surface reconstructions for InAs(001) studied with density-functional theory and STM. Phys. Rev. B 62: R7719–R7722, 2000.

    Article  Google Scholar 

  27. W. G. Schmidt, S. Mirbt, and F. Bechstedt. Surface phase diagram of (2 × 4) and (4 × 2) reconstructions of GaAs(001). Phys. Rev. B 62: 8087–8091, 2000.

    Article  Google Scholar 

  28. W. G. Schmidt. III–V compound semiconductor (001) surfaces. Appl. Phys. A 75: 89–99, 2002.

    Article  Google Scholar 

  29. E. Penev, P. Kratzer, and M. Scheffler. (unpublished)

    Google Scholar 

  30. C. Ratsch. Strain-induced change of surface reconstructions for InAs(001). Phys. Rev. B 63: art. no. 161306(R), 2001.

    Google Scholar 

  31. A. Ohtake, J. Nakamura, S. Tsukamoto, N. Koguchi, and A. Natori. New structure model for the GaAs(001)-c(4 × 4) surface. Phys. Rev. Lett. 89: art. no. 206102, 2002.

    Google Scholar 

  32. W. Haiss. Surface stress of clean and adsorbate-covered solids. Rep. Prog. Phys. 64: 591–648, 2001.

    Article  Google Scholar 

  33. D. I. Westwood, Z. Sobiesierski, E. Steimetz, T. Zettler, and W. Richter. On the development of InAs on GaAs(001) as measured by reflectance anisotropy spectroscopy: Continuous and islanded films. Appl. Surf. Sci. 123/124: 347–351, 1998.

    Article  Google Scholar 

  34. T. Kita, O. Wada, T. Nakayama, and M. Murayama. Optical reflectance study of the wetting layer in (In, Ga)As self-assembled dot growth on GaAs(001). Phys. Rev. B 66: art. no. 195312, 2002.

    Google Scholar 

  35. J. G. Belk, C. F. McConville, J. L. Sudijono, T. S. Jones, and B. A. Joyce. Surface alloying at InAs-GaAs interfaces grown on (001) surfaces by molecular beam epitaxy. Surf. Sci. 387: 213–226, 1997.

    Article  Google Scholar 

  36. Y. Garreau, K. Aïd, M. Sauvage-Simkin, R. Pinchaux, C. F. McConville, T. S. Jones, J. L. Sudijono, and E. S. Tok. Stoichiometry and discommensuration on InxGa1–xAs/GaAs(001) reconstructed surfaces: A quantitative x-ray diffuse-scattering study. Phys. Rev. B 58: 16177–16185, 1998.

    Article  Google Scholar 

  37. A. G. de Oliveira, S. D. Parker, R. Droopad, and B. A. Joyce. A generalized model for the reconstruction of {001} surfaces of III–V compound semiconductors based on a RHEED study of InSb(001). Surf. Sci. 227: 150–156, 1990.

    Article  Google Scholar 

  38. M. Sauvage-Simkin, Y. Garreau, R. Pinchaux, M. B. Véron, J. P. Landesman, and J. Nagle. Commensurate and incommensurate phases at reconstructed (In,Ga)As(001) surfaces: X-ray diffraction evidence for a composition lock-in. Phys. Rev. Lett. 75: 3485–3488, 1995.

    Article  PubMed  Google Scholar 

  39. J. G. Belk, J. L. Sudijono, D. M. Holmes, C. F. McConville, T. S. Jones, and B. A. Joyce. Spatial distribution of In during the initial stages of growth of InAs on GaAs(001)-c(4 × 4). Surf. Sci. 365: 735–742, 1996.

    Google Scholar 

  40. B. A. Joyce, D. D. Vvedensky, G. R. Bell, J. G. Belk, M. Itoh, and T. S. Jones. Nucleation and growth mechanism during MBE of III–V compounds. Mater. Sci. Eng. B 67: 7–16, 1999.

    Article  Google Scholar 

  41. D. J. Fisher. The Meyer-Neldel Rule. (Trans Tech Publications, Uetikon-Zürich, 2001).

    Google Scholar 

  42. E. Penev, P. Kratzer, and M. Scheffler. Effect of strain on surface diffusion in semiconductor heteroepitaxy. Phys. Rev. B 64: art. no. 085401, 2001.

    Google Scholar 

  43. H. T. Dobbs, D. D. Vvedensky, A. Zangwill, J. Johansson, N. Carlsson, W. Seifert. Mean-field theory of quantum dot formation. Phys. Rev. Lett. 79: 897–900, 1997.

    Article  Google Scholar 

  44. H. T. Dobbs, A. Zangwill, and D. D. Vvedensky. Nucleation and growth of coherent quantum dots: a mean field theory, in Surface Diffusion: Atomistic and Collective Processes, edited by M. Tringides (Plenum, New York, 1998) pp. 263–275.

    Google Scholar 

  45. J. Tersoff and R. M. Tromp. Shape transition in growth of strained islands: Spontaneous formation of quantum wires. Phys. Rev. Lett. 70: 2782–2785, 1993.

    Article  PubMed  Google Scholar 

  46. P. Kratzer, E. Penev, and M. Scheffler. First-principles studies of kinetics in epitaxial growth of III–V semiconductors. Appl. Phys. A 75: 79–88, 2002.

    Article  Google Scholar 

  47. A. Madhukar. A unified atomistic and kinetic framework for growth front morphology evolution and defect initiation in strained epitaxy. J. Cryst. Growth 163: 149–164, 1996.

    Article  Google Scholar 

  48. H. M. Koduvely and A. Zangwill. Epitaxial growth kinetics with interacting coherent islands. Phys. Rev. B 60: R2204–R2207, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this paper

Cite this paper

Penev, E., Kratzer, P. (2005). First-Principles Study of InAs/GaAs(001) Heteroepitaxy. In: Joyce, B.A., Kelires, P.C., Naumovets, A.G., Vvedensky, D.D. (eds) Quantum Dots: Fundamentals, Applications, and Frontiers. NATO Science Series, vol 190. Springer, Dordrecht. https://doi.org/10.1007/1-4020-3315-X_2

Download citation

Publish with us

Policies and ethics